簡易檢索 / 詳目顯示

研究生: 廖仁豪
Jen-Hao Liao
論文名稱: 應用於無線通訊之可自動調整頻寬轉導電容濾波器
A Gm-C Filter with Automatic Bandwidth Tuning for Wireless Applications
指導教授: 柏振球
Jenn-Chyou Bor
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 70
中文關鍵詞: 無線轉導電容濾波器巴特渥斯轉導放大器總諧波失真自動頻寬調整
外文關鍵詞: Wireless, Gm-C Filter, Butterworth, Operational Transconductance Amplifier, Total Harmonic Distortion, Automatic Bandwidth Tuning
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,設計了一個具有低失真性與可調整轉導值的轉導放大器,利用了電流再使用及增益推進的技巧,並把材質為金屬氧化物半導體的電晶體操作在線性區,可以得到高性度電壓與電流轉換的轉導放大器,進而使用此設計完成的轉導放大器來組成一個適用於高頻操作的轉導電容濾波器。由於轉導放大器的轉導值具有可調整性,所以利用此特性來適當地設定轉導電容濾波器的截止頻率,以用來克服晶片製程中所產生的變異。並且使用了設計在晶片上的可自動調整濾波器頻寬的迴路來決定轉導放大器的轉導值及補償製程變異的影響,此調整迴路利用了主僕式的技巧來完成設定轉導放大器的轉導值,進而達成調整濾波器的頻寬。這個迴路共包含了一個由轉導放大器所組成的積分器、兩個平方電路、一個比較器、一個數位類比轉換器和一個數位電路。

    為了驗證所設計的電路,實驗晶片採用了UMC 0.18 mm CMOS製程所製作,此濾波器為一個六階的巴特渥斯低通濾波器,在電源供應為1.8 V之下,經過量測的結果,-3 dB截止頻率為5.8 MHz ~ 7.9 MHz之間,直流增益為-1 dB ~ -0.12 dB,當輸入訊號頻率是1 MHz且訊號大小為1.4 Vppd時,其THD是小於-40 dB,IIP3為11 dBV,功率消耗為11.75 mW。當啟動自動調整頻寬迴路時,濾波器的頻寬的誤差率可在5.3 %之內。


    In this thesis, we <a href="http://www.ntsearch.com/search.php?q=design&v=56">design</a> an operational transconductance amplifier (OTA) with low distortion and tunable transconductance (Gm). By applying current reusing and gain boosting techniques, the MOS devices in the input stage of the proposed OTA operate in the linear region and the high linear voltage-to-current conversion can be obtained. Using this OTA, a Gm-C filter which is suitable for high frequency operation is constructed. To overcome the process variations, the transconductance of the OTA is tunable so that the cutoff frequency of the Gm-C filter can be set properly. Moreover, an on-chip automatic bandwidth tuning loop is also designed to automatically decide the transconductance of the OTA and compensate most variation effects.
    To verify the designed circuits, an experimental chip is fabricated in UMC 0.18 mm CMOS process. The realized filter is a 6th-order Butterworth lowpass filter. The power supply voltage is 1.8 V. The measurement results of the filter show that the tuning range of the -3-dB bandwidth is among 5.8 MHz to 7.9 MHz and the DC gain is among –1 dB to –0.12 dB. The total harmonic distortion (THD) is small than –40 dBc when the input signal is 1 MHz sinusoidal waveform with 1.4 Vppd. The input third intercept point (IIP3) is 11 dBV, and the power consumption is 11.75 mW. When activate the on-chip automatic tuning loop, the error of the filter bandwidth is less than 5.3 %.

    Abstract (Chinese)……………………….…………………………………………….I Abstract (English)……...……………………………………………………………..II Acknowledgement……………………………………………………………………III Contents…………………………………………………………………………..….IV List of Tables……………………………………………………………………...…VII List of Figures……………………………………………………………………...VIII Chapter 1 Introduction…………………………………………………..1 1.1 Background………………………………………………………………..1 1.2 Motivation…………………………………………………………………2 1.3 Thesis Overview………………………………………………………….4 Chapter 2 <a href="http://www.ntsearch.com/search.php?q=Design&v=56">Design</a> of OTA……………………………………….………5 2.1 Introduction to OTA Properties………………………………………...5 2.2 Analysis to Proposed OTA Circuit…………………………………….6 2.3 CMFB Circuit……………………………………………………………10 2.4 Simulation Results………………………………………………………11 2.4.1 OTA with CMFB Circuit………………………………………………..11 2.4.2 CMFB…………………………………………………………………...14 Chapter 3 <a href="http://www.ntsearch.com/search.php?q=Design&v=56">Design</a> of Gm-C Filter………………………...………16 3.1 Filter Specification……………………………………………………...16 3.1.1 Channel Interference……………………………………………………16 3.1.2 Filter Transfer Function…………………………………………………17 3.1.3 Realization of High-order Functions…………………………………...19 3.1.4 Summary………………………………………………………………..20 3.2 Integrator…………………………………………………………………21 3.3 6th-order Butterworth Filter………………………………………….23 3.4 Buffer……………………………………………………………………...28 3.5 Current Bias Circuit…………………………………………………….30 Chapter 4 Automatic Tuning System ……………………………33 4.1 Automatic Frequency Tuning System……………………………….33 4.2 Proposed Automatic Frequency Tuning System…………………...36 4.2.1 Square Function…………………………………………………………37 4.2.2 Comparator……………………………………………………………...39 4.2.3 Successive Approximation Register…………………………………….40 4.2.4 Digital to Analog Converter…………………………………………….43 4.3 Mixed-Mode Simulation Results…………………………………….44 4.3.1 Simulation Results by Ideal Behavior Model…………………………..45 4.3.2 Simulation Results by Actual Circuit Design…………………………...48 Chapter 5 Measurement…………………………………………….…52 5.1 Measurement Preparations………………………………………….…53 5.2 Measurement Results…………………………………………………..57 5.2.1 Frequency Response of Filter…………………………………………...57 5.2.2 Total Harmonic Distortion………………………………………………59 5.2.3 Compression Point & Intermodulation…………………………………60 5.2.4 Spurious-Free Dynamic Range (SFDR)………………………………..62 5.2.5 Automatic Bandwidth Tuning…………………………………………..64 5.3 Discussion………………………………………………………………..65 Chapter 6 Conclusion and Future Work……………………… 68 Bibliography………………………………………………………………..….69

    [1] Brent J. Maundy, Ivars G. Finvers, and Peter Aronhime, “Cross Coupled Transconductance Cell With Improved Linearity Range,” ISCAS 2000-IEEE, pp. 157-160, May 2000.
    [2] Mingdeng Chen, Jose Silva-Martinez, Shahriar Rokhsaz, and Moises Robinson, “A 2-Vpp 80-200-MHz Fourth-Order Continuous-Time Linear Phase Filter With Automatic Frequency Tuning,” IEEE J. Solid-State Circuits, vol. 38, pp. 1745-1749, Oct. 2003.
    [3] Rolf Schaumann, Mac E. Van Valkenburg, <a href="http://www.ntsearch.com/search.php?q=Design&v=56">Design</a> of Analog Filters, New York: Oxford, 2001.
    [4] David A. Johns, Ken Martin, Analog Integrated Circuit <a href="http://www.ntsearch.com/search.php?q=Design&v=56">Design</a>, New York: Wiley, 1997.
    [5] Jose Silva-Matinez, Joseph Adut, Jose Miguel Rocha-Perez, and Moises Robinson, ”A 60-mW 200-MHz Continuous-Time Seventh-Order Linear Phase Filter With On-Chip Automatic Tuning System,” IEEE J. Solid-State Circuits, vol. 38, pp. 216-225, Feb. 2003.
    [6] Bo Shi, Weiyun Shan, ”A Gm-C Baseband Filter with Automatic Frequency Tuning for a Direct Conversion IEEE802.11A <a href="http://www.ntsearch.com/search.php?q=Wireless&v=56">Wireless</a> LAN Receiver,” in Proc. ESSCIRC, pp. 103-106, 2004.

    [7] Venu Gopinathan, Maurice Tarsia, and Davy Choi, “Design Considerations and Implementation of a Programmable High-Frequency Continuous-Time Filter and Variable-Gain Amplifier in Submicrometer CMOS,” IEEE J. Solid-State Circuits, vol. 34, pp. 1698-1707, Dec. 1999.
    [8] E.Sanchez-Sinencio and J.Silva-Martinez, “CMOS Transconductance Amplifiers, Architectures and Active Filters: A Tutorial,” IEE proc.-Circuits Devices System, vol. 147, pp. 3-12, Feb. 2000.
    [9] Willy Sansen, ”Distortion in Elementary Transistor Circuits,” IEEE Trans. Circuits Syst. II, vol. 46, pp. 315-325, Mar. 1999.
    [10] IEEE Standard 802.11a – 1999: <a href="http://www.ntsearch.com/search.php?q=Wireless&v=56">Wireless</a> LAN MAC and PHY specifications – High-speed physical layer in the 5GHz band, New York, IEEE, 2000.
    [11] Dan FitzPatrick and Ira Miller, Analog Behavioral Modeling with TheVerilog-A Language, Boston: Kluwer Academic Publishers, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE