研究生: |
陳柏瑋 Chen, Bo-Wei |
---|---|
論文名稱: |
由Spo0J和parS複合體結構探討染色體分配系統的分子傳播機制 Insights into molecular spreading mechanism in chromosome partitioning system from the complex structure of Spo0J and parS |
指導教授: |
孫玉珠
Sun, Yuh-Ju |
口試委員: |
高茂傑
蕭傳鐙 袁小琀 王慧菁 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 精氨酸序列 、染色體分離 、胃幽門螺旋桿菌 、ParB 傳播 |
外文關鍵詞: | Arginine patch, Chromosome segregation, Helicobacter pylori, ParB spreading |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Spo0J (孢子形成零階段蛋白J,屬於ParB家族) 是ParABS (染色體分離系統:ParA,ParB 及parS)的一個重要組成蛋白與細菌的染色體分離有關。ParB (分離蛋白B)與其調節蛋白,ParA (分離蛋白A)與parS DNA交互作用促進染色體的分離。ParB結合染色體上特定parS DNA以及相鄰的非專一性DNA。各個ParB分子可以聚集在一起並沿著染色體傳播與擴散。ParB多聚合物和parS交互作用後所形成的高階核蛋白(high order nucleoprotein)集結染色體結構維持蛋白(SMC)的複合物並組裝到染色體上,藉此使染色體DNA凝聚,以便繼續進行染色體的分離及分配。ParB 傳播與擴散的功能雖然陸續有相關的文獻報導,但是詳細的功能機制尚未清楚。
胃幽門螺旋桿菌Spo0J蛋白 (HpSpo0J/ParB) 及氨基端片斷(#1-240 殘基) Spo0J (Ct-HpSpo0J)蛋白成功表達與純化。Ct-HpSpo0J的parS結合能力被決定,其解離常數為0.31 ± 0.06微莫耳濃度。其Ct-HpSpo0J-parS結構是我們利用多波長異常色散方法解析,解析度為3.1埃。Ct-HpSpo0J的分子結構折疊為一長型的分子形狀,包括具有蛋白分子間交互作用之氨基端功能域(#1-123殘基)及具有parS結合功能之DNA結合功能域(#124-240 殘基)。兩個Ct-HpSpo0J分子與parS結合。此外,Ct-HpSpo0J分子利用其氨基端功能域進行垂直和水平方向之交互作用來形成寡聚合物。這些相鄰及對向的相互作用是藉由一段高度保留之精氨酸序列 “RRLR” 來進行。這些相互作用可能與高階核蛋白複合分子的組裝及ParB傳播與擴散機制有關聯。我們的實驗結果提出在形成高階核蛋白複合體時,ParB是如何利用氨基端功能域和ParA進行交互作用,以及ParB是如何利用和parS的結合使其沿著染色體進行傳播的動作。我們提出一個ParB傳播與擴散模型去解釋染色體DNA分配時期,ParB是如何利用分子架橋的方式讓DNA凝聚並形成具功能性的高階複合物將染色體準確的分配到兩個子細胞中。
關鍵字: 精氨酸序列;染色體分離;胃幽門螺旋桿菌;ParB 傳播
Spo0J (stage 0 sporulation protein J, a member of the ParB superfamily) is an essential component of the ParABS (partition system of ParA, ParB and parS DNA) related bacterial chromosome segregation system. ParB (partition protein B) and its regulatory protein, ParA (partition protein A), act cooperatively through parS (partition S) DNA to facilitate chromosome segregation. ParB binds to chromosomal DNA at specific parS sites as well as the neighboring non-specific DNA sites. Various ParB molecules can associate together and spread along the chromosomal DNA. ParB oligomer and parS DNA interact together to form a high order nucleoprotein that is required for the loading of the SMC (structural maintenance of chromosomes) proteins onto the chromosome for chromosomal DNA condensation. Although ParB spreading has been studied, the detailed mechanism is still unclear. In this report, The Helicobacter pylori Spo0J protein (HpSpo0J/ParB) and C-terminal truncated Spo0J protein (residues 1-240) (Ct-HpSpo0J) were expressed and purified. The parS DNA binding ability for Ct-HpSpo0J was determined (Kd= 0.31 ± 0.06 μM). The crystal structure of the Ct-HpSpo0J-parS complex was determined by multi-wavelength anomalous dispersion method at 3.1 Å resolution. Ct-HpSpo0J folds into an elongated structure that includes a flexible N-terminal domain (residues 1-123) for protein-protein interaction and a conserved DNA-binding domain (residues 124-240) for parS binding. Two Ct-HpSpo0J molecules bind with one parS. Ct-HpSpo0J interacts vertically and horizontally with its neighbors through the N-terminal domain to form an oligomer. These adjacent and transverse interactions are accomplished via a highly conserved arginine patch, “RRLR”. From these results, we propose how ParB possibly associates with ParA protein through its protruded N-terminal domains, how ParB spreads along the chromosomal DNA by parS binding, and how ParB bridges DNA to compact and condense the chromosome during chromosome partitioning.
Key word: Arginine patch; Chromosome segregation; Helicobacter pylori; ParB spreading
References
1. Goodwin CS & Armstrong JA (1990) Microbiological aspects of Helicobacter pylori (Campylobacter pylori). European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 9(1):1-13.
2. Marshall BJ & Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1(8390):1311-1315.
3. Goodwin CS, McCulloch RK, Armstrong JA, & Wee SH (1985) Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. Journal of medical microbiology 19(2):257-267.
4. Scheiman JM & Cutler AF (1999) Helicobacter pylori and gastric cancer. The American journal of medicine 106(2):222-226.
5. Dunn BE, Cohen H, & Blaser MJ (1997) Helicobacter pylori. Clinical microbiology reviews 10(4):720-741.
6. Montecucco C & Rappuoli R (2001) Living dangerously: how Helicobacter pylori survives in the human stomach. Nature reviews. Molecular cell biology 2(6):457-466.
7. Tomb JF, et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388(6642):539-547.
8. Bult H (1996) Nitric oxide and atherosclerosis: possible implications for therapy. Molecular medicine today 2(12):510-518.
9. Hatakeyama M (2009) Helicobacter pylori and gastric carcinogenesis. Journal of gastroenterology 44(4):239-248.
10. Fraser CM, et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397-403.
11. Fleischmann T (1995) [Patients with stomas among the severely handicapped in our society]. Krankenpflege Journal 33(4):142-145.
12. Scholefield G, Whiting R, Errington J, & Murray H (2011) Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. Mol Microbiol 79(4):1089-1100.
13. Graham TGW, et al. (2014) ParB spreading requires DNA bridging. Genes Dev 28(11):1228-1238.
14. Yamaichi Y & Niki H (2000) Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci USA 97(26):14656-14661.
15. Sullivan NL, Marquis KA, & Rudner DZ (2009) Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137(4):697-707.
16. Wu N & Yu H (2012) The Smc complexes in DNA damage response. Cell Biosci 2:5-15.
17. Losada A & Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19(11):1269-1287.
18. Gruber S & Errington J (2009) Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137(4):685-696.
19. Erdmann N, Petroff T, & Funnell BE (1999) Intracellular localization of P1 ParB protein depends on ParA and parS. Proc Natl Acad Sci USA 96(26):14905-14910.
20. Gerdes K, Moller-Jensen J, & Bugge Jensen R (2000) Plasmid and chromosome partitioning: surprises from phylogeny. Molecular microbiology 37(3):455-466.
21. Schumacher MA (2008) Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. The Biochemical journal 412(1):1-18.
22. Trach K & Hoch JA (1989) The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 171(3):1362-1371.
23. Breier AM & Grossman AD (2007) Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol 64(3):703-718.
24. Havey JC, Vecchiarelli AG, & Funnell BE (2012) ATP-regulated interactions between P1 ParA, ParB and non-specific DNA that are stabilized by the plasmid partition site, parS. Nucleic Acids Res 40(2):801-812.
25. Leonard TA, Butler PJ, & Lowe J (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. EMBO J 24(2):270-282.
26. Wang X, Tang OW, Riley EP, & Rudner DZ (2014) The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr Biol 24(3):287-292.
27. Kleine BLA, Hummel H, Ulbrich MH, & Graumann PL (2013) SMC condensation centers in Bacillus subtilis are dynamic structures. J Bacteriol 195(10):2136-2145.
28. Funnell BE (2014) How to build segregation complexes in bacteria: Use bridges. Genes Dev 28(11):1140-1142.
29. Kim SK & Wang JC (1999) Gene silencing via protein-mediated subcellular localization of DNA. Proc Natl Acad Sci USA 96(15):8557-8561.
30. Radnedge L, Youngren B, Davis M, & Austin S (1998) Probing the structure of complex macromolecular interactions by homolog specificity scanning: the P1 and P7 plasmid partition systems. EMBO J 17(20):6076-6085.
31. Murray H & Errington J (2008) Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135(1):74-84.
32. Rodionov O & Yarmolinsky M (2004) Plasmid partitioning and the spreading of P1 partition protein ParB. Mol Microbiol 52(4):1215-1223.
33. Schumacher MA (2008) Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 412(1):1-18.
34. Autret S, Nair R, & Errington J (2001) Genetic analysis of the chromosome segregation protein Spo0J of Bacillus subtilis: evidence for separate domains involved in DNA binding and interactions with Soj protein. Mol Microbiol 41(3):743-755.
35. Gerdes K, Moller-Jensen J, & Bugge JR (2000) Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37(3):455-466.
36. Lee MJ, Liu CH, Wang SY, Huang CT, & Huang H (2006) Characterization of the Soj/Spo0J chromosome segregation proteins and identification of putative parS sequences in Helicobacter pylori. Biochem Biophys Res Commun 342(3):744-750.
37. Crooks GE, Hon G, Chandonia JM, & Brenner SE (2004) WebLogo: a sequence logo generator. Genome research 14(6):1188-1190.
38. Lin DC & Grossman AD (1998) Identification and characterization of a bacterial chromosome partitioning site. Cell 92(5):675-685.
39. Otwinowski Z & Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276:307-326.
40. Madhusudan, Kodandapani R, & Vijayan M (1993) Protein hydration and water structure: X-ray analysis of a closely packed protein crystal with very low solvent content. Acta crystallographica. Section D, Biological crystallography 49(Pt 2):234-245.
41. Tong L, et al. (1997) Experiences from the structure determination of human cytomegalovirus protease. Acta crystallographica. Section D, Biological crystallography 53(Pt 6):682-690.
42. Hendrickson WA & Ogata CM (1997) Phase determination from multiwavelength anomalous diffraction measurements. Method Enzymol 276:494-523.
43. Adams PD, et al. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(Pt 11):1948-1954.
44. Emsley P, Lohkamp B, Scott WG, & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486-501.
45. R. A. Laskowski MWM, D. S. Moss and J. M. Thornton (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26( ):283-291
46. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, & Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277-1282.
47. Petoukhov MV, Konarev PV, Kikhney AG, & Svergun DI (2007) ATSAS 2.1 - towards automated and web-supported small-angle scattering data analysis. J Appl Crystallogr 40:S223-S228.
48. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing (vol 76, pg 2879, 1999). Biophys J 77(5):2896-2896.
49. Kozin MB & Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34:33-41.
50. Lee MJ, Liu CH, Wang SY, Huang CT, & Huang H (2006) Characterization of the Soj/Spo0J chromosome segregation proteins and identification of putative parS sequences in Helicobacter pylori. Biochemical and biophysical research communications 342(3):744-750.
51. Leonard TA, Butler PJ, & Lowe J (2004) Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 53(2):419-432.
52. Vecchiarelli AG, Schumacher MA, & Funnell BE (2007) P1 partition complex assembly involves several modes of protein-DNA recognition. J Biol Chem 282(15):10944-10952.
53. Schumacher MA & Funnell BE (2005) Structures of ParB bound to DNA reveal mechanism of partition complex formation. Nature 438(7067):516-519.
54. Schumacher MA, Piro KM, & Xu WJ (2010) Insight into F plasmid DNA segregation revealed by structures of SopB and SopB-DNA complexes. Nucleic Acids Res 38(13):4514-4526.
55. Sanchez A, Rech J, Gasc C, & Bouet JY (2013) Insight into centromere-binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance. Nucleic Acids Res 41(5):3094-3103.
56. Khare D, Ziegelin G, Lanka E, & Heinemann U (2004) Sequence-specific DNA binding determined by contacts outside the helix-turn-helix motif of the ParB homolog KorB. Nat Struct Mol Biol 11(7):656-663.
57. Kusiak M, Gapczynska A, Plochocka D, Thomas CM, & Jagura-Burdzy G (2011) Binding and spreading of ParB on DNA determine its biological function in Pseudomonas aeruginosa. J Bacteriol 193(13):3342-3355.
58. Schumacher MA, et al. (2015) Structures of archaeal DNA segregation machinery reveal bacterial and eukaryotic linkages. Science 349(6252):1120-1124.
59. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495-503.
60. Schneidman-Duhovny D, Hammel M, & Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 38(Web Server issue):W540-544.
61. Schneidman-Duhovny D, Hammel M, Tainer JA, & Sali A (2013) Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J 105(4):962-974.
62. Murray H, Ferreira H, & Errington J (2006) The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol Microbiol 61(5):1352-1361.
63. Broedersz CP, et al. (2014) Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proc Natl Acad Sci USA 111(24):8809-8814.
64. Drozdetskiy A, Cole C, Procter J, & Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Research 43(W1):W389-W394.
65. McPhillips TM, et al. (2002) Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 9:401-406.