研究生: |
林世明 Lin, Shih-Ming |
---|---|
論文名稱: |
可調變潛熱吸收:以錫鋅合金/矽氧化物核-殼微奈米顆粒創造熱吸收平台 Tunable Latent Heat Exhaustion: Creation of Endothermic Plateau by Controlled SnxZn1-x@Silica Core-shell Micro/nano- Particles |
指導教授: |
闕郁倫
Chueh, Yu-Lun 謝光前 Hsieh, Kuang-Chien 周立人 Chou, Li-Jen |
口試委員: |
呂明璋
潘欽 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 錫鋅合金 、氧化矽包覆奈米粒子 、潛熱 、HITEC 熔鹽 、太陽熱能 |
外文關鍵詞: | Tin-Zinc alloy, silica-coated particles, latent heat, HITEC salt, solar thermal energy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽熱能發電系統是由將太陽光以熱能的形式儲存並在需要電力時將儲存的熱能轉變成電能的裝置。理論上,太陽熱能發電系統可以全天候發電並且提供相當高的發電效率(約40%)。然而,太陽熱能發電系統的熱儲存容量受到了儲存熱能的工作載體的比熱限制,也限制了發電廠的電能產出。
在本研究,錫鋅合金核-氧化矽殼微奈米粒子被合成並進行了一系列的性質分析。由掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)觀察,所有的微奈米顆粒皆完整的被氧化矽殼層包覆。藉由退火與X-Ray結晶繞射分析,確認了這些氧化矽殼層保護了內層的金屬顆粒不受氧化。在細心控制錫前驅物與鋅的比例下,藉由X-Ray結晶繞射定量分析確認錫鋅合金顆粒中錫與鋅的比例可以受到控制。利用差示掃描量熱法(DSC)分析,這些微米顆粒呈現了兩個熱吸收峰。其中一個吸收峰座落於錫鋅合金共晶點(200˚C),而另一個吸收峰則隨著錫鋅兩者的比例座落於介於360˚C 至 400˚C處。然而,奈米顆粒的熱性質則與微米顆粒熱性質有所不同。奈米顆粒的熱吸收峰則分別落在錫鋅合金共晶點(200˚C)、錫金屬熔點(230˚C)與鋅金屬熔點(420˚C)處,但是這些吸收峰與純金屬熱吸收峰相比有寬廣化的趨勢。儘管如此,這些合金顆粒在熱循環測試中皆展現良好的熱穩定性。
總結而言,錫鋅合金核-氧化矽殼微奈米粒子展現了可調變的熱性質,並且有潛力被彈性化的使用於在適合的操作溫度區間摻雜到工作流裡改善太陽熱能系統熱儲存性質。
Solar-thermal power generation system is designed for storing sunlight as heat and converting it into electricity when power is needed. Theoretically, it offers electrical power with much higher efficiency (approximately 40%) as compared to, on the average, 20% of its photovoltaic counterparts. The higher efficiency offers a good possibility to overcome the diurnal limitation of solar power. However, the amount of power generation in the solar-thermal system is limited by the amount of thermal energy stored, which is determined by the heat capacity of the working fluid in the solar-thermal power plants.
In this thesis, both SiOx-coated Tin-Zinc-alloy microparticles and nanoparticles are well-coated with silica. The silica shell shows good protection of the interior alloy from oxidation against annealing in air. The results are verified with XRD, SEM, and TEM analyses. Also, the XRD Reference Intensity Ratio (RIR) analyses indicate that the Tin-Zinc composition of the SiOx-coated Tin-Zinc-alloy can be tuned by controlling the relative quantities of the Tin and Zinc precursors. Each DSC measurement of these microparticles contains two peaks resulted from the latent heat. One of them takes place at the eutectic temperature of 200 ˚C and the other falls in the range between 360 ˚C and 400 ˚C depending on the Tin/Zinc ratio. In the case of nanoparticles, the DSC results are different. Instead of two, there are three peaks. One of them is again at the eutectic point at 200 ˚C and the other two are at 230 ˚C and 420 ˚C, which are the melting points of Tin and Zinc, respectively, although the peaks broaden as compared to pure Tin and Zinc. Both micro and nano-particles show good thermal and structural stability when subjected to DSC heat cycle tests.
In summary, SiOx-coated Tin-Zinc-alloy microparticles show tunable thermal properties that can be used as the working fluids in the solar thermal power system for different working temperature ranges. Its temperature tenability adds more flexibility to enhance the heat storage capacities of the solar thermal systems.
1. Mills, D.,
Advances in solar thermal electricity technology.
Solar Energy, (2004). 76(1): p. 19-31.
2. Metals - Melting Temperatures. Available from:
http://www.engineeringtoolbox.com/melting-temperature-metals-d_860.html.
3. Metals and Latent Heat of Fusion. Available from:
http://www.engineeringtoolbox.com/fusion-heat-metals-d_1266.html.
4. Chen, S.-W., C.-H. Wang, S.-K. Lin, and C.-N. Chiu,
Phase diagrams of Pb-free solders and their related materials systems.
Journal of Materials Science: Materials in Electronics, (2007). 18(1-3): p. 19-37.
5. Olesinski, R. and G. Abbaschian,
The Ge-Zn (Germanium-Zinc) system.
Journal of Phase Equilibria, (1985). 6(6): p. 540-543.
6. Le Caër, G., P. Delcroix, S. Bégin-Colin, and T. Ziller,
High-energy ball-milling of alloys and compounds.
Hyperfine interactions, (2002). 141(1-4): p. 63-72.
7. Chakka, V., B. Altuncevahir, Z. Jin, Y. Li, and J. Liu,
Magnetic nanoparticles produced by surfactant-assisted ball milling.
Journal of applied physics, (2006). 99(8): p. 08E912.
8. Klar, E.,
Metals Handbook Ninth Edition Vol. 7 Powder Metallurgy.
American Society for Metals, (1984): p. 419-443.
9. Tan, K.S. and K.Y. Cheong,
Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route.
Journal of nanoparticle research, (2013). 15(4): p. 1-29.
10. Li, G. and Y. Luo,
Preparation and characterization of dendrimer-templated Ag-Cu bimetallic nanoclusters.
Inorganic chemistry, (2008). 47(1): p. 360-364.
11. Zhao, J., D. Zhang, and J. Zhao,
Fabrication of Cu–Ag core–shell bimetallic superfine powders by eco-friendly reagents and structures characterization.
Journal of Solid State Chemistry, (2011). 184(9): p. 2339-2344.
12. Mallory, G.O. and J.B. Hajdu,
Electroless plating: fundamentals and applications. (1990): William Andrew.
13. Stöber, W., A. Fink, and E. Bohn,
Controlled growth of monodisperse silica spheres in the micron size range.
Journal of colloid and interface science, (1968). 26(1): p. 62-69.
14. Liz-Marzán, L.M., M. Giersig, and P. Mulvaney,
Synthesis of nanosized gold-silica core-shell particles.
Langmuir, (1996). 12(18): p. 4329-4335.
15. Graf, C., D.L. Vossen, A. Imhof, and A. van Blaaderen,
A general method to coat colloidal particles with silica.
Langmuir, (2003). 19(17): p. 6693-6700.
16. Guerrero‐Martínez, A., J. Pérez‐Juste, and L.M. Liz‐Marzán,
Recent progress on silica coating of nanoparticles and related nanomaterials.
Advanced Materials, (2010). 22(11): p. 1182-1195.
17. Goldstein, J., D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J.R. Michael,
Scanning electron microscopy and X-ray microanalysis. (2003): Springer.
18. Principle of EDX.
(2007); Available from:
http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy.
19. Quantitative Analysis, Reference Intensity Ratio (RIR).
[PDF slides]; Available from:
http://www.icdd.com/resources/tutorials/pdf/Quantitative%20Analysis%20RIR.pdf.
20. Hillier, S.,
Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation.
Clay Minerals, (2000). 35(1): p. 291-302.
21. Steinmann, W., S. Walter, M. Beckers, G. Seide, and T. Gries,
Thermal Analysis of Phase Transitions and Crystallization in Polymeric Fibers.
(2013).
22. Thomas, L.C.,
Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change. (2005), TA Instruments.
23. Lueken, C., G.E. Cohen, and J. Apt,
Costs of Solar and Wind Power Variability for Reducing CO2 Emissions.
Environmental science & technology, (2012). 46(17): p. 9761-9767.
24. Dursun, B. and C. Gokcol,
The role of hydroelectric power and contribution of small hydropower plants for sustainable development in Turkey.
Renewable Energy, (2011). 36(4): p. 1227-1235.
25. Hepbasli, A. and O. Akdemir,
Energy and exergy analysis of a ground source (geothermal) heat pump system.
Energy Conversion and Management, (2004). 45(5): p. 737-753.
26. Himmel, M.E., S.-Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, and T.D. Foust,
Biomass recalcitrance: engineering plants and enzymes for biofuels production.
science, (2007). 315(5813): p. 804-807.
27. Jacobson, M.Z. and M.A. Delucchi,
Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials.
Energy Policy, (2011). 39(3): p. 1154-1169.
28. REN, R.,
global status report, 2012.
Renewable energy policy network for the 21st century: Paris: REN21 Secretariat, (2012).
29. Rahman, S.,
Green power: what is it and where can we find it?
Power and Energy Magazine, IEEE, (2003). 1(1): p. 30-37.
30. Oh, J., H.-C. Yuan, and H.M. Branz,
An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures.
Nature nanotechnology, (2012). 7(11): p. 743-748.
31. Reilly, H.E. and G.J. Kolb,
An evaluation of molten-salt power towers including results of the solar two project. (2001), Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US).
32. Solar Project in California Desert Ivanpah World's Largest Solar Plant.
[cited 2014 April 12, 2014]; Available from:
http://www.brightsourceenergy.com/ivanpah-solar-project#.U0pWq_mSyGc.
33. Grimaldi, P.G.a.I.,
SOLAR TRES: Proposal of a solar-only 24-hour-operation Solar Tower Plant for Southern Spain. (2000): Solar Thermal.
34. Medrano, M., A. Gil, I. Martorell, X. Potau, and L.F. Cabeza,
State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies.
Renewable and Sustainable Energy Reviews, (2010). 14(1): p. 56-72.
35. Sharma, S.D. and K. Sagara,
Latent heat storage materials and systems: a review.
International Journal of Green Energy, (2005). 2(1): p. 1-56.
36. Hoffman, H.W.,
DuPont Hitec Heat Transfer Salt. (1960): E. I. Dupont Chem. Products Sales Division, Wilmington, De. 1986.
37. Bohlmann, E.G.,
HEAT TRANSFER SALT FOR HIGH TEMPERATURE STEAM GENERATION. OAK RIDGE NATIONAL LABORATORY
38. Janz, G.J.,
Physical Properties Data Compilations, relevant to energy storage. Vol. Part II and IV. National Bureau of Standards.
39. Hong, Y., S. Ding, W. Wu, J. Hu, A.A. Voevodin, L. Gschwender, E. Snyder, L. Chow, and M. Su,
Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.
ACS applied materials & interfaces, (2010). 2(6): p. 1685-1691.
40. Lai, C.-C., W.-C. Chang, W.-L. Hu, Z.M. Wang, M.-C. Lu, and Y.-L. Chueh,
A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO x core–shell nanoparticles.
Nanoscale, (2014). 6: p. 4555–4559.
41. Lu, M.-C. and C.-H. Huang,
Specific heat capacity of molten salt-based alumina nanofluid.
Nanoscale research letters, (2013). 8(1): p. 1-7.
42. ASTM,
Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. (2011), ASTM International, West Conshohocken, PA, 2011.
43. Mohd Omar, F., H. Abdul Aziz, and S. Stoll,
Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River humic acid.
Science of the Total Environment, (2014). 468: p. 195-201.
44. Aman, R. and G. Matela,
Tin (IV) Complexes of Schiff Base Derived from Amino Acid: Synthesis and Characteristic Spectral Studies.
Journal of Chemistry, (2012). 2013.
45. Kim, J., W. Park, and H.-G. Hong,
The effect of steric hindrance on rate constant of a diels-alder reaction on the hydroquinone-terminated self-assembled monolayer.
BULLETIN-KOREAN CHEMICAL SOCIETY, (2004). 25(7): p. 1081-1084.
46. Günther, D. and F. Steimle,
Mixing rules for the specific heat capacities of several HFC-mixtures.
International journal of refrigeration, (1997). 20(4): p. 235-243.
47. Kousksou, T., A. Jamil, K. El Omari, Y. Zeraouli, and Y. Le Guer,
Effect of heating rate and sample geometry on the apparent specific heat capacity: DSC applications.
Thermochimica Acta, (2011). 519(1): p. 59-64.
48. Liu, H., J. Armand, J. Bouzon, and J. Vergnaud,
Effect of sample size and heating rate on the DSC process for reactions of high enthalpy.
Thermochimica acta, (1988). 126: p. 81-92.
49. Martin, J., J. Salla, A. Cadenato, and X. Ramis,
Effects of experimental sample mass on the calorimetric study of thermoset resins.
Journal of Thermal Analysis and Calorimetry, (1992). 38(4): p. 917-927.
50. Günther, E., S. Hiebler, H. Mehling, and R. Redlich,
Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods.
International Journal of Thermophysics, (2009). 30(4): p. 1257-1269.