研究生: |
林正鴻 Lin, Chang-Hung |
---|---|
論文名稱: |
應用於高離子濃度下DNA感測之0.18 μm CMOS電容式感測器開發 Development of 0.18 μm CMOS capacitive sensors for DNA detection under high ionic strength |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
劉承賢
Liu, Cheng-Hsien 林致廷 Lin, Chih-Ting |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | DNA感測 、電容式感測晶片 、CMOS bio-MEMS 、電雙層效應 、高頻 |
外文關鍵詞: | DNA measurement, capacitive sensors, CMOS bio-MEMS, Debye length effect, high frequency |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在這個半導體產業蓬勃發展的時代,晶片設計被應用在各種層面,更陸續出現許多跨領域的結合與應用。其中,將電路設計和生醫感測結合便是一個熱門的應用,藉由將CMOS電路製程和微機電系統整合在同一片晶片上,我們可以製作出具有良好感測度的生醫感測晶片。如此一來我們可以應用到先進CMOS製程的優點,將感測單位結合電路設計做成陣列。
這些生醫感測晶片可以藉由特定的修飾步驟,用來感測微量的生物分子,比如蛋白質或DNA等。但是這些生物分子需在具有鹽分的溶液中才能保持活性,進而進行感測,而高離子濃度的檢體溶液會因離子遮蔽而產生電雙層,造成Debye Length效應,因此如何解決Debye Length效應也是此議題中需面對的問題。
本論文提出在高頻中以電容式感測器來檢測DNA分子。晶片是使用TSMC 0.18 M 1P6M CMOS製程,感測器是使用指叉式電極做為感測電容,搭配不同操作頻率的環形震盪器做為感測電路,並整合電路設計做出88的陣列進行感測。我們的設計操作於高頻,試圖藉以解決高離子濃度溶液中的Debye Length效應,以提高感測器的感測度。最後我們再利用整合的讀取電路將訊號輸出並進行分析。
關鍵字: DNA感測、電容式感測晶片、CMOS bio-MEMS、電雙層效應、高頻。
Abstract
In this era of vigorous development of the semiconductor industry, chip designs are applied at various levels, and many cross-disciplinary integration and applications have emerged one after another. Among them, the integration of readout circuits and biomedical sensors becomes popular. By integrating the CMOS circuit process and MEMS on the same chip, we can produce biomedical sensor chips with good sensitivity. In this way, we can take advantages of the advanced CMOS process to conveniently implement an integrated sensor array.
These biomedical sensor chips can be used to sense tiny amounts of biomolecules, such as proteins or DNA, through specific modification and binding steps. However, these biomolecules need to be active in a salty solution for sensing, and the sample solution with high ion concentration produces a strong charge screening effect due to the small Debye length of the electrical double layer on sensor surface. Therefore, this work aims to reduce the Debye screening effect when detecting biomolecules under high ionic strength.
To reduce charge screening, this study proposes the use of capacitive sensors to detect DNA molecules at high frequencies. The chips are fabricated using TSMC 0.18 M CMOS 1P6M process. The sensors consist of the interdigitated electrodes as the sensing capacitor and the ring oscillators operating at different frequencies as the readout circuits. An 88 sensor array has been developed. The high-frequency modulation is effective to reduce charge screening so as to improve the sensitivity of the sensor.
Keywords: DNA measurement, capacitive sensors, CMOS bio-MEMS, Debye length effect, high frequency.
參考文獻
[1]Y. Huang, C. Huang, T. Lin C. Lin, L. Chen, P. Hsiao, B. Wu, H. Hsueh, B. Kuo, H. Liao, Y. Juang, C. Wang and S. Lu, "A CMOS cantilever-based label-free DNA SoC with improved sensitivity for hepatitis B virus detection." IEEE transactions on biomedical circuits and systems vol.7, no.6, pp. 820-831, 2013.
[2]J. You, K. Jang, S. Lee, D. Bang, S. Haam, C. Choi, J. Park, and S. Na, "Label-free detection of zinc oxide nanowire using a graphene wrapping method." Biosensors and Bioelectronics, vol.68, pp. 481-486, 2015.
[3]P. Bataillard, F. Gardies, N. Jaff and N. Martelet, "Direct detection of immunospecies by capacitance measurements." Analytical Chemistry vol.60, no.21 pp. 2374-2379, 1988.
[4]A. L. Newman, K. W. Hunter, and W. D. Stanbro. "The capacitive affinity sensor: a new biosensor." Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France. 1986.
[5]R. M. Matanguihan, K. B. Konstantinov, and T. Yoshida. "Dielectric measurement to monitor the growth and the physiological states of biological cells." Bioprocess Engineering vol.11, no.6, pp. 213-222, 1994.
[6]D. C. Cullen, R. S. Sethi, and C. R. Lowe. "Multi-analyte miniature conductance biosensor." Analytica Chimica Acta vol.231, pp. 33-40, 1990.
[7]A. A. Shul’ga, A.P. Soldakin, "Thin-film conductometric biosensors for glucose and urea determination." Biosensors and Bioelectronics vol.9, no.3, pp. 217-223, 1994.
[8]J. Li, M. Xue, Z. Lu, Z. Zhang, C. Feng and M. Chan, "A high-density conduction-based micro-DNA identification array fabricated with a CMOS compatible process." IEEE Transactions on Electron Devices vol.50, no.10, pp. 2165-2170, 2003.
[9]A. Benvidi, N. Rajabzadeh, H. Zahedi, M. Mazloum-Ardakani, M. M. Heidari, L. Hosseinzadeh, "Simple and label-free detection of DNA hybridization on a modified graphene nanosheets electrode." Talanta vol.137, pp. 80-86, 2015.
[10]X. Wang, F. Nan, J. Zhao, T. Yang, T. Ge, K. Jiao, "A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity." Biosensors and Bioelectronics vol.64, pp. 386-391, 2015.
[11]R. Pei, Z. Chang, E. Wang and X. Yang, "Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy." Biosensors and Bioelectronics vol.16, no.6, pp. 355-361, 2001.
[12]Katz, Eugenii, and Itamar Willner. "Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA‐sensors, and enzyme biosensors." Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis vol.15, no.11, pp. 913-947, 2003.
[13]Daniels, S. Jonathan, and Nader Pourmand. "Label‐free impedance biosensors: Opportunities and challenges." Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis vol.19, no.12 pp. 1239-1257, 2007.
[14]C. M. Chen, and Michael S-C. Lu. "A CMOS capacitive biosensor array for highly sensitive detection of pathogenic avian influenza DNA." 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017.
[15]C. Stagni, C.Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, C Paulus, M. Schienle, M. Augustyniak, and R. Thewes, "CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement." IEEE Journal of Solid-State Circuits vol.41, no.12, pp. 2956-2964, 2006.
[16]C. Stagni, C.Guiducci, L. Benini, B. Ricco, S. Carrara, C Paulus, M. Schienle , and R. Thewes, "A fully electronic label-free DNA sensor chip." IEEE Sensors Journal vol.7 pp. 577-585, 2007.
[17]L. Moreno-Hagelsieb, Luis, B. Foultier, G. Laurent, R. Pampin, J. Remacle, J. P. Raskin, and D. Flandre, "Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors." Biosensors and bioelectronics vol22, no.9-10, pp. 2199-2207, 2007.
[18]J.Z. Chena, A.A. Darhuberb, S.M. Troian, S. Wagner, "Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation." Lab on a Chip vol.4, no.5 pp. 473-480, 2004.
[19]A. Balasubramanian, B. Bhuva, R. Mernaugh, F.R. Haselton, "Si-based sensor for virus detection." IEEE Sensors Journal vol.5, no.3, pp. 340-344, 2005.
[20]S.B. Prakash, P. Abshire, "A CMOS capacitance sensor that monitors cell viability." SENSORS, 2005 IEEE. IEEE, 2005.
[21]M. I. Prodromidis, "Impedimetric biosensors and immunosensors." Pakistan Journal of Analytical & Environmental Chemistry vol.8, no.2, pp. 3, 2007.
[22]E. Katz, I. Willner, and J. Wang, "Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles." Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis vol.16, no.1‐2 pp. 19-44, 2004.
[23]S. M. Radke, and C. A. Evangelyn, "Design and fabrication of a microimpedance biosensor for bacterial detection." IEEE sensors journal vol.4, no.4, pp. 434-440, 2004.
[24]E. A. Vasconcelos, N. G. Peres, C. O. Pereira, V. L. da Silva, E. F. da Silva Jr., and F. Dutra, "Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor." Biosensors and Bioelectronics vol.25, no.4, pp. 870-876, 2009.
[25]N. Gao, W. Zhou, X. Jiang, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors." Nano letters vol.15, no.3, pp. 2143-2148, 2015.
[26]A. Numnuam, P. Kanatharana, B. Mattiasson, P. Asawatreratanakul, B. Wogkittisuksa, C. Limsakul, and P. Thavarungkul, "Capacitive biosensor for quantification of trace amounts of DNA." Biosensors and Bioelectronics vol.24, no.8, pp. 2559-2565, 2009.
[27]S. Carrara, V. Bhalla, C. Stagnia, L. Benini, A. Ferretti, F. Vallea, A. Gallottac, B. Riccob, and B. Samor, "Label-free cancer markers detection by capacitance biochip." Sensors and Actuators B: Chemical vol.136, no.1, pp. 163-172, 2009.
[28]L. Wang, M. Veselinovic, "A sensitive DNA capacitive biosensor using interdigitated electrodes." Biosensors and Bioelectronics vol.87, pp. 646-653, 2017.
[29]H. Helmholtz, "Studien über elektrische Grenzschichten", Annalen der Physik, vol. 7, pp. 837-882, 1879.
[30]M. Gouy, "Sur la constitution de la charge électrique a la surface d'un électrolyte", J. de Physicque et Appliquee, vol. 9, pp. 457-468, 1910.
[31]D. L. Chapman,“A contribution to the theory of electrocapillarity,” Phil. Mag., vol. 25, pp. 475-475, 1913.
[32]N. Gao, W. Zhou, X. Jiang, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors", Nano Lett., vol. 15, no. 3, pp. 2143-2148, 2015.
[33]N. Gao, W. Zhou, X. Jiang, G. Hong, T.-M. Fu and C. M. Lieber, "General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors", Nano Lett., vol. 15, no. 3, pp. 2143-2148, 2015.
[34]R. Elnathan, M. Kwiat, A. Pevzner, Y. Engel, L. Burstein, A. Khatchtourints, A. Lichtenstein, R. Kantaev, and F. Patolsky, "Biorecognition layer engineering: Overcoming screening limitations of nanowire-based FET devices", Nano Lett., vol. 12, no. 10, pp. 5245-5254, 2012.
[35]G. S. Kulkarni, Z. Zhong, “Detection beyond the debye screening length in a high frequency nanoelectronic biosensor,” Nano Lett. vol.12, pp. 719-723, 2012.
[36]C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, M. A. Jongsma, and F. P. Widdershoven, "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays", Nature Nanotechnol., vol.10, no.9, pp. 791-795, 2015.
[37]F. Widdershoven, A. Cossettni, “A CMOS pixelated nanocapacitor biosensor platform for high-frequency impedance spectroscopy and image,” IEEE transactions on biomedical circuit and systems, vol.12, no.6, pp. 1369-1382, 2018.
[38]A. Quershi, Y. Gurbuz, “A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker,” Biosensors and Bioelectronics, vol.25, pp. 877-882, 2009.
[39]H. J. Panya, H. T. Kim, “Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements,” Sensors and Actuators B: Chemical, vol.199, pp. 259-268, 2014.