研究生: |
周明宗 |
---|---|
論文名稱: |
添加BaO-ZnO-B2O3玻璃對BaTi4O9的燒結行為與微波介電性質之影響 |
指導教授: | 簡朝和 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 29 |
中文關鍵詞: | 微波介電 、BaTi4O9 、Ba0-ZnO-B2O3玻璃 、燒結 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討BaO對BaO-ZnO-B2O3玻璃系統性質的影響以及添加BaO-ZnO-B2O3玻璃對BaTi4O9粉末燒結的影響。隨著玻璃成分BaO的量增加,BaO-ZnO-B2O3玻璃的軟化點(Ts)、結晶溫度(Tcr)與熔點(Tm)隨之降低。而BaO-ZnO-B2O3玻璃經熱處理後,形成的結晶相由Zn3B2O6和Zn4B6O17變成Ba4B2O7、Ba2B2O5與Ba2B10O17。此外,BaO-ZnO-B2O3玻璃的介電常數隨著玻璃成分BaO的量增加而提高。
玻璃成分BaO明顯改善BaO-ZnO-B2O3玻璃與BaTi4O9的潤濕情況。但添加BaO-ZnO-B2O3玻璃的燒結緻密度卻隨著玻璃成分BaO的量增加而降低。其原因在於BaO-ZnO-B2O3玻璃與BaTi4O9的燒結系統屬於反應燒結,而在燒結過程中玻璃成分BaO的存在會抑制BaO-ZnO-B2O3玻璃與BaTi4O9間的固相反應,以致於燒結緻密度降低。
[1] H. M. O’Bryan, J. Thomson, and J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57, 450-53 (1974)
[2] S. G. Mhaisalkar, W. E. Lee, and D. W. Readey, “Processing and Characterization of BaTi4O9,” J. Am. Ceram. Soc., 72 [11], 2154-58 (1989)
[3] H. M. O’Bryan, JR., and J. Thomson, JR. “Phase Equilibria in the TiO2-Rich Region of the System BaO–TiO2,” J. Am. Ceram. Soc., 57 [12], 522–26 (1974)
[4] S. Y. Zhang, X. Wu, X. L. Chen, M. He, Y. G. Cao, Y. T. Song, and D. Q. Ni, “Phase Relations in the BaO-B2O3-TiO2 System and the Crystal Structure of BaTi(BO3)2,” Mater. Res. Bull., 38, 783-88 (2003)
[5] S. G. Mhaisalkar, D. W. Readey, and S. A. Akbar, “Microwave Dielectric Properties of Doped BaTi4O9,” J. Am. Ceram. Soc., 74 [8], 1894–98 (1991)
[6] T. Negas, G. Yeager, S. Bell, and N. Coats, “BaTi4O9/Ba2Ti9O20-Based Ceramics Resurrected for Modern Microwave Applications,” J. Am. Ceram. Soc. Bull., 72, 80–89 (1993)
[7] J. H. Choy, and Y. S. Han, “Microwave Characteristics of BaO–TiO2 Ceramics Prepared via a Citrate Route,” J. Am. Ceram. Soc., 78 [5], 1167–72 (1995)
[8] M. H. Weng, T. J. Liang and C. L. Huang, “Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method,” J. Eur. Ceram. Soc., 22, 1693-98 (2002)
[9] C. F. Yang, “The Microwave Characteristics of Glass-BaTi4O9 Ceramics,” Jpn. J. Appl. Phys., 38, 3576-79 (1999)
[10] D. W. Kim, D. G. Lee, and K. S. Hong, “Low-Temperature Firing and Microwave Dielectric Properties of BaTi4O9 with Zn-B-O Glass System,” Mater. Res. Bull., 36, 585-95 (2001)
[11] S. G. Lu, K. W. Kwok, H. L. W. Chan, and C. L. Choy, “Structural and Electrical Properties of BaTi4O9 Microwave Ceramics Incorporated with Glass Phase,” Mater. Sci. and Eng., B99, 491-94 (2003)
[12] C. M. Cheng, C. F. Yang, S. H. Lo, and T. Y. Tseng, “Sintering BaTi4O9/Ba2Ti9O20-based Ceramics by Glass Addition,” J. Eur. Ceram. Soc., 20, 1061-67 (2000)
[13] 羅毅榮, 吳振名 “微波界電質低溫共燒材料開發及機理研究,” 國立清華大學碩士論文(1996)
[14] D. N. Kim, J. Y. Lee, J. S. Huh, and H. S. Kim, “Thermal and Electrical Properties of BaO-B2O3-ZnO Glasses,” J. Non-Cryst. Solids, 306, 70-75 (2002)
[15] J. M. Wu, and H. L. Huang, “Microwave Properties of Zinc, Barium and Lead Borosilicate Glasses,” J. Non-Cryst. Solids, 206, 116-24 (1999)
[16] B. W. Hakki, and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Transactions on Microwave Theory and Techniques, MTT-8, 402-10 (1960)
[17] Y. Kobayashi, and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-loss Materials by the Dielectric Rod Resonator Method,” IEEE Transactions on Microwave Theory and Techniques, MTT-33, 586-92 (1985)
[18] H. Scholze, “Glass, Nature, Structure, and Properties,” 3rd Ed., Springer, New York, 189-318 (1991)