研究生: |
陳昭明 Chen, Chao-Ming |
---|---|
論文名稱: |
金屬電路於彈性基板之可拉伸性設計與分析 Design and Analysis of Stretchable Electrical Routings on Elastomeric Substrate |
指導教授: |
賀陳弘
Hong, Hocheng |
口試委員: |
林士傑
徐文祥 洪景華 徐瑞坤 陳炳煇 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 可拉伸金屬導線 、彈性基材 、數值模型 |
外文關鍵詞: | Stretchable electrical routing, Nonlinear model |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文乃針對可拉伸金屬佈線於彈性基材上之拉伸性能預測,運用有限元素法建立二維非線性數值模型,以導線的應變分布與趨勢來決定最佳的佈線幾何尺寸參數,並規劃製程,以驗證理論與實務的相異點,進一步提升可拉伸金屬佈線的拉伸性能。在理論分析方面,以Mooney-Rivlin solid作為彈性基材的材料模型,金屬的真實應力應變曲線作為導線的材料模型,並以非線性疊代方法求解,尋找試片拉伸過程中導線的應變成長曲線,以此快速判斷佈線參數的設計問題。文中以波狀佈線為例,考慮其幾何設計參數(線寬W、波形半徑R、波形角度θ以及波形連接長度L)的變化,分析導線於拉伸過程中之作動行為,並與文獻及實驗結果做比較驗證,同時亦對導線拉伸時之物理特性作若干討論。最後依據實驗與模擬分析結果,提出佈線的設計準則與最佳化參數。
Stretchable electrical devices, superior to flexible electrical devices, possess large capacity of mechanical deformability, thereby are more advantageous for biomedical and textile applications. To enhance the stretchability performance, the interconnecting wires go with serpentine geometry either in horizontal or vertical direction. The objective of the present study is to find the design rule of the stretchable electrical routing on elastomeric substrate. The simulation analysis is in agreement with the experimental studies in references, the proposed two-dimensional nonlinear model can predict the fracture occurrence of the stretched routing. The effective parameters (width W, radius R, circle angle θ and connecting length L) of routing design are discussed by simulations and experiments. The design rules of routing are presented and an optimized stretchable routing pattern is obtained.
[1] Kim, D.H., Lu, N., Ma, R., Kim, Y.S., Kim, R.H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A.; et al. Epidermal electronics. Science 2011, 333, 838–843.
[2] Huang, X., Cheng, H., Chen, K., Zhang, Y., Zhang, Y., Liu, Y., Zhu, C., Ouyang, S., Kong, G.W., Yu, C., et al. Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans. Biomed. Eng. 2013, 60, 2848–2857.
[3] Yao, H., Shum, A.J., Cowan, M., Lähdesmäki, I., Parviz, B.A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 2011, 26, 3290–3296.
[4] Sekitani, T., Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 2010, 22, 2228–2246.
[5] Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. PNAS 2004, 101, 9966–9970.
[6] Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J., Geddes, J.B., III, Xiao, J., Wang, S., Hung, Y., et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753.
[7] Kim, D.H., Lu, N., Ghaffari, R., Kim, Y.S., Lee, S.P., Xu, L., Wu, J., Kim, R.H., Song, J., Liu, Z., et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 2011, 10, 316–323.
[8] Ko, H.C., Shin, G., Wang, S., Stoykovich, M.P., Lee, J.W., Kim, D.H., Ha, J.S., Huang, Y., Hwang, K.C., Rogers, J.A. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 2009, 5, 2703–2709.
[9] Maghribi, M., Hamilton, J., Polla, D., Rose, K., Wilson, T., Krulevitch, P. Stretchable micro-electrode array. In Proceedings of the 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, Madison, WI, USA, 2–4 May 2002; pp. 80–83.
[10] Yu, Z., Tsay, C., Lacour, S.P., Wagner, S., Morrison, B., III. Stretchable microelectrode arrays a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics. In Proceedings of the 28th IEEE EMBS Annual International Conference, New York, NY, USA, 30 August–3 September 2006; pp. 6732–6735.
[11] Tsay, C., Lacour, S.P., Wagner, S., Morrison, B., III. Architecture, fabrication, and properties of stretchable micro-electrode arrays. In Proceedings of 4th IEEE Conference on Sensors, Irvine, CA, USA, 30 October–3 November 2005; pp. 1169–1172.
[12] Kim, D.H., Ghaffarib, R., Lu, N., Wang, S., Lee, S.P., Keum, H., D’Angelob, R., Klinker, L., Su, Y., Lu, C., et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. PNAS 2012, 109, 19910–19915.
[13] Xu, S., Zhang, Y., Cho, J., Lee, J., Huang, X., Jia, L., Fan, J.A., Su, Y., Su, J., Zhang, H., et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1–8.
[14] Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499.
[15] Park, S.I., Xiong, Y., Kim, R.H., Elvikis, P., Meitl, M., Kim, D.H., Wu, J., Yoon, J., Yu, C.J., Liu, Z., et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981.
[16] Yu, Z., Niu, X., Liu, Z., Pei, Q. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 2011, 23, 3989–3994.
[17] Ho, H., Saeedi, E., Kim, S.S., Shen, T.T., Parviz, B.A. Contact lens with integrated inorganic semiconductor devices. In Proceedings of IEEE 21st International Conference on Micro Electro Mechanical Systems, Tucson, AZ, USA, 13–17 January 2008; pp. 403–406.
[18] Someya, T. Stretchable Electronics, 1st ed.; Wiley-VCH: Weinheim, Germany, 2012; 147–154.
[19] Hsu, Y.Y., Gonzalez, M., Bossuyt, F., Axisa, F., Vanfleteren J., Wolf, I.D. The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J. Micromech. Microeng. 2010, 20, doi:10.1088/0960-1317/20/7/075036.
[20] Gonzalez, M., Axisa, F., Bulcke, M.V., Brosteaux, D., Vandevelde, B., Vanfleteren, J. Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 2008, 48, 825–832.
[21] Kim, D.H., Liu, Z., Kim, Y.S., Wu, J., Song J., Kim, H.S., Huang, Y., Hwang, K.C., Zhang, Y., Rogers, J.A. Optimized structural designs for stretchable silicon integrated circuits. Small 2009, 5, 2841–2847.
[22] Brosteaux, D., Fabrice, A., Gonzalez, M., Vanfleteren, J. Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Dev. Lett. 2007, 28, 552–554.
[23] Lacour, S.P., Jones, J., Suo, Z., Wagner, S. Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Dev. Lett. 2004, 25, 179–181.
[24] Kim, D.H., Song, J., Choi, W.M., Kim, H.S., Kim, R.H., Liu, Z., Huang, Y.Y., Hwang, K.C., Zhang, Y.W., Rogers, J.A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. PNAS 2008, 105, 18675–18680.
[25] Huh, Y.H., Kim, D.I., Kim, D.J., Lee, H.M., Park, J.H. Dependency of micro-mechanical properties of gold thin films on grain size. In Proceedings of the 1st Conference on Engineering against Fracture, Patras, Greece, 28–30 May 2008; pp. 339–346.
[26] Jonnalagadda, K., Karanjgaokar, N., Chee, J.L., Peroulis, D. Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater. 2010, 58, 4674–4684.
[27] Chasiotis, I., Bateson, C., Timpano, K., McCarty, A.S., Barker, N.S., Stanec, J.R. Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 2007, 515, 3183–3189.
[28] Lacour, S.P., Wagner, S., Huang, Z., Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 2003, 82, 2404–2406.
[29] Gray, D.S., Tien, J., Chen, C.S. High-conductivity elastomeric electronics. Adv. Mater. 2004, 16, 393–397.
[30] Yu, C., Jiang, H. Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications. Thin Solid Films 2010, 519, 818–822.
[31] Wagner, S., Lacour, S.P., Jones, J., Hsu, P.I., Sturm, J.C., Li, T., Suo, Z. Electronic skin: Architecture and components. Phys. E Low Dimens. Syst. Nanostruct. 2004, 25, 326–334.
[32] Lacour, S.P., Jones, J., Suo, Z., Wagner, S. Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Dev. Lett. 2004, 25, 179–181.
[33] Kim, D.H., Ahn, J.H., Choi, W.M., Kim, H.S., Kim, T.H., Song, J., Huang, Y.Y., Liu, Z., Lu, C., Rogers, J.A. Stretchable and foldable silicon integrated circuits. Science 2008, 320, 507–511.
[34] Kim, D.H., Song, J., Choi, W.M., Kim, H.S., Kim, R.H., Liu, Z., Huang, Y.Y., Hwang, K.C., Zhang, Y.W., Rogers, J.A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. PNAS 2008, 105, 18675–18680.
[35] Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468–1472.
[36] Xu, F., Zhu, Y. Highly Conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.
[37] Yao, S., Yong, Z.Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345–2352.
[38] Park, J., Wang, S., Li, M., Ahn, C., Hyun, J.K., Kim, D.S., Kim, D.K., Rogers, J.A., Huang, Y., Jeon, S. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 2012, 3, 1–8.
[39] Dickey, M.D., Chiechi, R.C., Larsen, R.J., Weiss, E.A., Weitz, D.A., Whitesides, G.M. Eutectic Gallium-Indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104.
[40] Zhu, S., So, J.H., Mays, R., Desai, S., Barnes, W.R., Pourdeyhimi, B., Dickey, M.D. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 2013, 23, 2308–2314.
[41] Ladd, C., So, J.H., Muth, J., Dickey, M.D. 3D printing of free standing liquid metal microstructures. Adv. Mater. 2013, 25, 5081–5085.
[42] Marsden, J., House, I. The Chemistry of Gold Extraction, Ellis Horwood, 2006; pp. 24.
[43] Yu, Y.S., Zhao, Y.P. Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney Rivlin and linear elastic constitutive models. Adv. Colloid Interface Sci. 2009, 332, 467–476.