研究生: |
吳宗澤 Wu, Tsung-Tse |
---|---|
論文名稱: |
雙向諧振直流電源轉換器之設計與研製 Design and Implementation of a Bidirectional Resonant DC Converter |
指導教授: |
潘晴財
Pan, Ching-Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電力電子產業研發碩士專班 Industrial Technology R&D Master Program on Power Electronics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 雙向電力潮流直流轉換器 、再生能源 、柔性切換 、耦合電感器 |
外文關鍵詞: | bidirectional DC converters (BDC), renewable energy systems, soft switching, coupled inductors |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
時至今日,雙向直流轉換器在許多電源系統高低壓匯流排之間扮演一關鍵的介面角色,例如:電動車輛、再生能源系統、不間斷電源系統以及電信系統與計算機系統等相關應用,並持續發揮著相當重要的作用。其雙向功率潮流能力致使操作在如太陽能光伏系統與混合動力電動車輛,將使之系統更可靠與靈活。事實上,本文針對再生能源系統提出具電氣隔離以及柔性切換之高升降壓轉換比雙向直流轉換器。
基本上,本論文之主要貢獻茲分述如下:首先本文提出雙向直流轉換器電路拓檏由半橋電路、耦合電感、全橋電路以及諧振電容器和輸出電容器所組成,其具有雙向高轉換比、電氣隔離與柔性切換能力等特點。另外對於各類不同的應用,耦合電感器之耦合係數選擇度提供了很大的設計彈性。第二點貢獻則為針對本文所提雙向直流轉換器,提出一些設計準則以利於設計製作轉換器。最後,本論文實際製作一額定功率為250W,高壓側以匯流排電壓200V而低壓側以電池電壓24V之雙向直流轉換器,並利用數位控制器DSP TMS320F28335變頻操控。由實測結果可知,轉換器工作於降壓模式最高效率約93.3%,而升壓模式最高效率約為92.5%。
Today, bidirectional DC converters (BDC) are playing a much more important role of key component to interface between a high-voltage bus and a low-voltage bus in power systems such as electric vehicles, renewable energy sources, uninterrupted power supplies, telecom and computer systems. The bidirectional power flow capability enables one to operate the corresponding power system such as photovoltaic systems and hybrid electric vehicles more reliably and flexibly. In fact, a BDC with galvanic isolation and high step up/down ratio as well as with soft switching characteristic for renewable energy systems is focused in this thesis.
Basically, the major contributions of this thesis can be summarized as follows. First, a BDC topology consisting of a half bridge, a coupling inductor, a full bridge together with a resonant capacitor and an output capacitor is proposed to achieve high step up/down ratio, galvanic isolation and soft switching capability. The choice of the coefficient of coupling of the coupled inductors can provide one with one more degree of design flexibility for different applications. Second, some design guidelines are also provided for easy design of the BDC. Finally, a 250W prototype with 200V dc bus voltage and 24V battery voltage is implemented with a digital controller using DSP TMS320F28335 to verify the validity of the proposed converter. It is seen that a maximum efficiency of 93.3% can be achieved for forward step-down operation mode, and a maximum efficiency of 92.5% can be obtained for reverse step-up operation.
[1] M. K. Kazimierczuk, D. Q. Vuong, B. T. Nguyen and J. A. Weimer,“Topologies of bidirectional PWM dc-dc power converters,” Proc. IEEE NAECON 1993, vol.1, pp. 435-441, 24-28 May 1993.
[2] Wai R.-J., Lin C.-Y. and Chang Y.-R., “High step-up bidirectional isolated converter with two input power sources,” Industrial Electronics, IEEE Transactions on, Vol. 56, Issue 7, July 2009, pp. 2629-2643.
[3] B. Ray, “Bidirectional DC/DC power conversion using quasi-resonant topology,” Proc. 23rd IEEE PESC 1992, vol.1, 29 June-3 July 1992, pp. 617-624.
[4] Dong-Hyun Ha, Nam-Ju Park, Kui-Jun Lee, Dong-Gyu Lee and Dong-Seok Hyun, “Interleaved bidirectional DC-DC converter for automotive electric systems,” Proc. IEEE IAS 2008, 5-9 Oct. 2008, pp. 1-5.
[5] Hui Li, Fang Zheng Peng and Lawler J.S., “A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices,” Industry Applications, IEEE Transactions on, Vol. 39, Issue 2, March-April 2003, pp. 525-535.
[6] Das P., Laan B., Mousavi S.A. and Moschopoulos G., “A Nonisolated Bidirectional ZVS-PWM active clamped DC–DC converter,” Power Electronics, IEEE Transactions on, Vol. 24, Issue 2, Feb. 2009, pp. 553-558.
[7] Dehong Xu, Chuanhong Zhao and Haifeng Fan, “A PWM plus phase-shift control bidirectional DC-DC converter,” Power ectronics, IEEE Transactions on, Vol. 19, Issue 3, May 2004, pp. 666-675.
[8] S. Inoue and H. Akagi, “A bidirectional DC–DC converter for an energy storage system with galvanic isolation,” IEEE Trans. Power Electron., vol. 22, issue 6, Nov. 2007, pp. 2299-2306.
[9] L. Zhu, “A novel soft-commutating isolated boost full-bridge ZVS-PWM DC–DC converter for bidirectional high power applications,” IEEE Trans. Power Electron., vol. 21, issue 2, March 2006, pp. 422-429.
[10] E. Hiraki, K. Yamamoto and T. Mishima, “An isolated bidirectional DC-DC soft-switching converter for super capacitor based energy storage systems,” Proc. IEEE PESC 2007, 17-21 June 2007,pp. 390-395.
[11] T. Gilchrist, “Fuel cells to the fore [electric vehicles],” IEEE Spectrum, vol. 35, no. 11, pp.35-40, November 1998.
[12] M. Begovic, A. Pregelj, and C. Honsberg, “Green power: status and perspectives,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1734-1743, December 2001.
[13] H. Falk, “Prolog to renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1214-1215, August 2001.
[14] M. Ellis, M. Von Spakovsky, and D. Nelson, “Fuel cell systems: efficient, flexible energy conversion for 21st century,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1808-1818, December 2001.
[15] L. R. Chen, N. Y. Chu, C. S. Wang, and R. H. Liang, “Design of a reflex-based bidirectional converter with the energy recovery function,” IEEE Trans. on Industrial Electronics, vol. 55, no. 8, pp. 3022-3029, August 2008.
[16] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. on Power Electronics, vol. 22, no. 5, pp. 1986-1996, September 2007.
[17] C. C. Hua and C. H. Hsu, “Implementation of a regenerative pulse and equalization battery charger using a dsp,” International Conference on Power Electronics and Drives Systems, vol. 2, pp. 955-959, 2005.
[18] K. Yamamoto, E. Hiraki, T. Tanaka, M. Nakaoka, and T. Mishima,“Bidirectional DC-DC converter with full-bridge / push-pull circuit for automobile electric power systems,” IEEE Proc. PESC’06, pp. 1-5, Jun. 2006.
[19] G. Hua and F. C. Lee, “Soft-switching techniques in PWM converters”, IEEE Transactions Industrial Electronics, vol. 42, pp. 595–603, 1995.
[20] E. S. Kilders, J. B. Ejea, A. Ferreres, E. Maset, V. Esteve, J. Jordan, A. Garrigos and J. Calvente, “Bidirectional coupled inductors step-up converter for battery discharging-charging,” IEEE Power Electronics Specialists Conference, pp. 64-68, 2005.
[21] K. Venkatesan, “Current mode controlled bidirectional flyback converter,” Proc. IEEE Power Electronics Specialists Conference,pp.835-842, June–July 1989.
[22] K.-W. Ma and Y.-S. Lee, “An integrated flyback converter for DC uninterruptable power supplies,” IEEE Transactions on Power Electronics, vol. 11, pp. 318–327, Mar. 1996.
[23] Y. S. Lee and G. T. Cheng, “Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications,” IEEE Trans. Power Electron., vol. 21, issue 5, Sept. 2006, pp. 1213-1224.
[24] H. S. -H. Chung, W. L. Cheung and K. S. Tang, “A ZCS bidirectional flyback DC/DC converter,” IEEE Trans. Power Electron., vol. 19, issue 6, Nov. 2004, pp. 1426-1434.
[25] Y. S. Lee, Y. S. Lin, S. H. Hsiao and Y. P. Ko, “Multiple output zero-current switching bi-directional converter,” Proc. 33rd IEEE IECON 2007, Nov. 2007,
pp.2058-2063.
[26] K. Siri and C. Q. Lee, “Constant switching frequency LLC-type series resonant converter,” Proc. 32nd Midwest Symposium on Circuits and Systems, vol. 1, pp.513–516,1989.
[27] Yilei Gu, Zhengyu Lu and Zhaoming Qian, “A novel LLC resonant converter topology: voltage stresses of all components in secondary side being half of output voltage,” Proc. of CES/IEEE 5th International Power Electronics and Motion Control Conference, vol.1, pp.1–5, 2006.
[28] C.Q. Lee, R. Liu, and I. Batarseh, “Parallel resonant converter with LLC-type commutation,” IEEE Transactions Aerospace and Electronic Systems, vol. 25, pp. 844–847, 1989.
[29] Bucher, T. Durbaum, D. Kubrich, and A. Stadler, “Comparison of different design methods for the parallel resonant converter,” Proc. 12th International Power Electronics and Motion Control Conference,pp.810–815, 2006.
[30] B. Yang, F.C. Lee, A.J. Zhang, G. Huang, “LLC resonant converter for front end DC/DC conversion,” IEEE-APEC 2002, pp. 1108-1112
[31] Lu B., Liu W., Liang Y., Lee F. C., Van Wyk J. D., “Optimal design methodology for LLC resonant converter,” IEEE APEC, 2006,pp. 533– 538.
[32] De Simone, S.; Adragna, C.; Spini, C.; Gattavari, G., "Design-oriented steady-state analysis of LLC resonant converters based on FHA" Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2006, pp:200 – 207.
[33] “Simplified analysis and design of series-resonant LLC half-bridge converter,” I&PC Div. - Off-line SMPS Application Lab.
[34] B. Yang, “Topology investigation for front end DC/DC power conversion for distributed power system” Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering, 2003.
[35] Adragna, C.; De Simone, S.; Spini, C, “A design methodology for LLC resonant converters based on inspection of resonant tank currents” appplied Power Electronics Conference and Exposition, 2008. APEC 2008. Twenty-Third Annual IEEE2008 , pp: 1361 – 1367,2008
[36] Y. Jang; M.M. Jovanovic, D.L. Dillman, “Hold-up time extension circuit with integrated magnetics,” IEEE APEC’05. pp. 219 - 225
[37] A. K. S. Bhat, “Analysis and design of LCL-type series resonant converter,” IEEE Transactions on Industrial Electronics, Volume:41, Issue:1 , Feb. 1994 , pp.118 – 124
[38] J.F. Lazar, R. Martinelli, “Steady-state analysis of the LLC series resonant converter,"IEEE APEC"01,pp:728-735
[39] De Simone, S.; Adragna, C.; Spini, C, “Design guideline for magnetic integration in LLC resonant converters,” Power Electronics, Electrical Drives, Automation and Motion, 2008. SPEEDAM 2008. International Symposium on , pp:950 – 957,2008
[40] A. van den Bossche, V. Cekov Valchev: “Inductors and transformersfor powerelectronics,” ed. Marcel Dekker Inc, ISBN 1574446797
[41] “An introduction to LLC resonant half-bridge converters”, AN2644, www.st.com.
[42] Severns R.P., “Topologies for three-element resonant converters,” Power Electronics, IEEE Transactions on, Vol. 7, Issue 1, Jan. 1992, pp. 89-98.
[43] “磷酸鋰鐵電池 40138F1型,” 昇陽國際半導體。
[44] “2.0 Amp output current IGBT gate drive optocoupler,” Aglient Technologies.
[45] “Voltage transducer LV 25-P,” datasheet, LEM.
[46] “Current transducer LA 55-P,” datasheet, LEM.
[47] M. Brown, Power Supply Cookbook, 2nd Edition, Newnes, May 2001.
[48] 謝沐田,"高低頻變壓器設計",第十五章,全華科技圖書公司,民國八十二年一月。