簡易檢索 / 詳目顯示

研究生: 王勵育
Wang, Li-Yu
論文名稱: 在已知部分通道特性訊息的異質網路下獵能收發器之能源效率波束成型設計
Energy Efficient Beamforming Design With SWIPT for Heterogeneous Cellular Networks Under Partial CSI
指導教授: 林澤
Lin, Che
口試委員: 鄭傑
Cheng, Jay
翁詠祿
Ueng, Yeong-Luh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 52
中文關鍵詞: 異質網路凸優化最佳化獵能系統波束成型設計
外文關鍵詞: heterogeneous network, convex optimization, energy harvesting, beamforming design
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究裡,我們考慮一個異質網路(heterogeneous network),其中包含一個宏單位基地站(macrocell)和數個毫微單位基地站(femtocell)。在每個毫微單位基地站中,基地台個別只服務一個使用者,而此接收者具有分配功率(Power splitting)之獵能(Energy harvesting)功能。與此同時所有毫微單位基地台也對宏單位基地站裡的使用者造成干擾。在假設部份通道資訊(channel state information)─不完整通道資訊(imperfect CSI)和通道之統計特性(channel distribution information)情況下,我們致力於系統能源效率(energy efficiency)最大化,並且共同將波束成型向量和功率分配參數最佳化。在不完整通道資訊的假設中,我們在考慮毫微單位裡的使用者服務品質(quality of service)和獵能功率限制下,針對整體的最糟糕的能源效率最大化設計強健波束成型(robust beamforming)。而在通道之統計特性的假設中,我們在考慮中斷傳送機率限制下針對整體的能源效率最大化。此共同優化間涉及複雜且非凸特性的限制下,我們提出一個集中式連續凸化近似演算法去得到高精準度的近似解。我們模擬結果顯示在這兩個不同的通道資訊下均能達到不錯的表現。在不完整通道資訊的假設中,我們的演算法比強制歸零(zero-forcing)方法和以功率最小化的波束成型設計相比,分別提高了23.1%和267.6%的表現。而在通道之統計特性的假設下,我們的演算法比強制歸零方法和以速率最大化的波束成型設計相比,分別提高116.7%和21.1%的表現。這也代表在以能源效率為主的波束成型設計在下世代的無線通訊系統中是很重要的。


    In this work, we consider a heterogeneous cellular network (HCN) with a macrocell and multiple femtocells. In each femtocell, the femto base station (FBS) serves a femto user (FU), which is capable of simultaneous wireless information and power transfer (SWIPT) energy harvesting (EH) in a power splitting manner. All FBSs suppress their interference to macro users (MUs) via a interference power constraint. In such a HCN, we aim to maximize the energy efficiency (EE) of all femtocells via the joint design of beamforming and power splitting ratios under partial channel state information (CSI) - imperfect CSI and channel distribution information (CDI) at FBSs. For the imperfect CSI case, we consider the robust beamforming design that maximizes the worst-case EE for all femtocells under the quality-of-service (QoS) constraints and EH constraints. For the CDI case, we consider the problem of maximizing EE under rate outage constraints. The non-convex objective functions and constraints make the problem difficult to solve. To resolve this issue, We proposed successive convex approximation (SCA) algorithms (EE-SCA-1 for the imperfect CSI case and EE-SCA-2 for the CDI case) that provide high-quality approximate solutions. Simulations demonstrated that our proposed EE-SCA-1 and EE-SCA-2 achieve near-optimal performance for both the imperfect CSI and CDI cases. Furthermore, for the imperfect CSI case, our EE-SCA-1 improved EE by as much as 23.1% and 267.6% over the zero-forcing (ZF) scheme and a power minimization scheme. For the CDI case, our EE-SCA-2 improved EE by as much as 116.7% and 21.1% over the ZF scheme and a rate maximization scheme. It indicates that careful design of energy efficient beamforming scheme is essential for the next-generation wireless communication systems.

    Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Energy Efficiency Maximization under Imperfect CSI at Transmitters 9 3.1 Worst-Case Robust Beamforming and Power Splitter Design . . . . . . . . . . . . . . 10 3.2 Convex Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Successive Convex Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Energy Efficiency Maximization under CDI at Transmitters 24 4.1 Convex Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Successive Convex Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Simulation Results 33 5.1 Performance for the imperfect CSI case . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Performance for the CDI case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

    [1] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky, T. A. Thomas, J. G.
    Andrews, P. Xia, H. S. Jo, and others, “Heterogeneous cellular networks: From theory to practice,”
    IEEE Communications Magazine, vol. 50, no. 6, 2012.
    [2] R. Q. Hu and Y. Qian, “An energy efficient and spectrum efficient wireless heterogeneous network
    framework for 5g systems,” IEEE Communications Magazine, vol. 52, no. 5, pp. 94–101, 2014.
    [3] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi,
    “A survey on 3gpp heterogeneous networks,” IEEE Wireless Communications, vol. 18, no. 3,
    2011.
    [4] E. Hossain, M. Rasti, H. Tabassum, and A. Abdelnasser, “Evolution toward 5g multi-tier cellular
    wireless networks: An interference management perspective,” IEEE Wireless Communications,
    vol. 21, no. 3, pp. 118–127, 2014.
    [5] C. Xu, M. Sheng, X. Wang, C.-X. Wang, and J. Li, “Distributed Subchannel Allocation for Interference
    Mitigation in OFDMA Femtocells: A Utility-Based Learning Approach,” IEEE Transactions
    on Vehicular Technology, vol. 64, no. 6, pp. 2463–2475, Jun. 2015.
    [6] R. V. Prasad, S. Devasenapathy, V. S. Rao, and J. Vazifehdan, “Reincarnation in the Ambiance:
    Devices and Networks with Energy Harvesting,” IEEE Communications Surveys & Tutorials,
    vol. 16, no. 1, pp. 195–213, 2014.
    47
    [7] Y. He, X. Cheng, W. Peng, and G. L. Stuber, “A survey of energy harvesting communications:
    Models and offline optimal policies,” IEEE Communications Magazine, vol. 53, no. 6, pp. 79–85,
    2015.
    [8] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless Networks With RF Energy Harvesting:
    A Contemporary Survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp.
    757–789, 2015.
    [9] R. Zhang and C. K. Ho, “MIMO Broadcasting for Simultaneous Wireless Information and Power
    Transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, May
    2013.
    [10] L. Liu, R. Zhang, and K.-C. Chua, “Wireless Information Transfer with Opportunistic Energy
    Harvesting,” IEEE Transactions on Wireless Communications, vol. 12, no. 1, pp. 288–300, Jan.
    2013.
    [11] ——, “Wireless Information and Power Transfer: A Dynamic Power Splitting Approach,” IEEE
    Transactions on Communications, vol. 61, no. 9, pp. 3990–4001, Sep. 2013.
    [12] Q. Shi, L. Liu, W. Xu, and R. Zhang, “Joint Transmit Beamforming and Receive Power Splitting
    for MISO SWIPT Systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 6, pp.
    3269–3280, Jun. 2014.
    [13] S. Timotheou, I. Krikidis, G. Zheng, and B. Ottersten, “Beamforming for MISO Interference
    Channels with QoS and RF Energy Transfer,” IEEE Transactions on Wireless Communications,
    vol. 13, no. 5, pp. 2646–2658, May 2014.
    [14] M. Sheng, L. Wang, X. Wang, Y. Zhang, C. Xu, and J. Li, “Energy Efficient Beamforming in
    MISO Heterogeneous Cellular Networks With Wireless Information and Power Transfer,” IEEE
    Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 954–968, Apr. 2016.
    48
    [15] D.W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient power allocation in OFDM systems with
    wireless information and power transfer,” in 2013 IEEE International Conference on Communications
    (ICC), pp. 4125–4130.
    [16] W. Dinkelbach, “On nonlinear fractional programming,” Management science, vol. 13, no. 7, pp.
    492–498, 1967.
    [17] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource allocation in multiuser OFDM
    systems with wireless information and power transfer,” in 2013 Wireless Communications and
    Networking Conference (WCNC), pp. 3823–3828.
    [18] Q. Shi, C. Peng,W. Xu, M. Hong, and Y. Cai, “Energy Efficiency Optimization for MISO SWIPT
    Systems With Zero-Forcing Beamforming,” IEEE Transactions on Signal Processing, vol. 64,
    no. 4, pp. 842–854, Feb. 2016.
    [19] O. Tervo, L.-N. Tran, and M. Juntti, “Decentralized coordinated beamforming for weighted sum
    energy efficiency maximization in multi-cell MISO downlink,” in 2015 IEEE Global Conference
    on Signal and Information Processing (GlobalSIP).
    [20] M. Shenouda and T. Davidson, “On the Design of Linear Transceivers for Multiuser Systems
    with Channel Uncertainty,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 6,
    pp. 1015–1024, Aug. 2008.
    [21] M.-M. Zhao, Y. Cai, Q. Shi, B. Champagne, and M.-J. Zhao, “Robust Transceiver Design for
    MISO Interference Channel With Energy Harvesting,” IEEE Transactions on Signal Processing,
    vol. 64, no. 17, pp. 4618–4633, Sep. 2016.
    [22] W. Xu, Y. Cui, H. Zhang, G. Y. Li, and X. You, “Robust BeamformingWith Partial Channel State
    Information for Energy Efficient Networks,” IEEE Journal on Selected Areas in Communications,
    vol. 33, no. 12, pp. 2920–2935, Dec. 2015.
    49
    [23] C. Lin, C.-J. Lu, and W.-H. Chen, “Outage-Constrained Coordinated Beamforming With Opportunistic
    Interference Cancellation,” IEEE Transactions on Signal Processing, vol. 62, no. 16, pp.
    4311–4326, Aug. 2014.
    [24] E. Bjornson, R. Zakhour, D. Gesbert, and B. Ottersten, “Cooperative Multicell Precoding: Rate
    Region Characterization and Distributed StrategiesWith Instantaneous and Statistical CSI,” IEEE
    Transactions on Signal Processing, vol. 58, no. 8, pp. 4298–4310, Aug. 2010.
    [25] W.-C. Li, T.-H. Chang, C. Lin, and C.-Y. Chi, “Coordinated Beamforming for Multiuser MISO
    Interference Channel Under Rate Outage Constraints,” IEEE Transactions on Signal Processing,
    vol. 61, no. 5, pp. 1087–1103, Mar. 2013.
    [26] W.-C. Li, T.-H. Chang, and C.-Y. Chi, “Multicell Coordinated Beamforming With Rate Outage
    Constraint-Part I: Complexity Analysis,” IEEE Transactions on Signal Processing, vol. 63, no. 11,
    pp. 2749–2762, Jun. 2015.
    [27] ——, “Multicell Coordinated Beamforming With Rate Outage Constraint-Part II: Efficient Approximation
    Algorithms,” IEEE Transactions on Signal Processing, vol. 63, no. 11, pp. 2763–
    2778, Jun. 2015.
    [28] D. W. K. Ng, E. S. Lo, and R. Schober, “Multiobjective Resource Allocation for Secure Communication
    in Cognitive Radio Networks With Wireless Information and Power Transfer,” IEEE
    Transactions on Vehicular Technology, vol. 65, no. 5, pp. 3166–3184, May 2016.
    [29] F. Zhou, Z. Li, J. Cheng, Q. Li, and J. Si, “Robust AN-Aided Beamforming and Power Splitting
    Design for Secure MISO Cognitive Radio With SWIPT,” IEEE Transactions on Wireless Communications,
    vol. 16, no. 4, pp. 2450–2464, Apr. 2017.
    50
    [30] R. R. Kumar and J. Gurugubelli, “How green the LTE technology can be?” in 2011 2nd International
    Conference onWireless Communication, Vehicular Technology, Information Theory and
    Aerospace & Electronic Systems Technology (Wireless VITAE), pp. 1–5.
    [31] Z.-Q. Luo, W.-K. Ma, A. Man-Chu, and S. Zhang, “Semidefinite Relaxation of Quadratic Optimization
    Problems,” Signall Processing Magazine, pp. 1–14, May 2010.
    [32] D. W. K. Ng, E. S. Lo, and R. Schober, “Robust Beamforming for Secure Communication in
    Systems With Wireless Information and Power Transfer,” IEEE Transactions on Wireless Communications,
    vol. 13, no. 8, pp. 4599–4615, Aug. 2014.
    [33] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version
    2.1,” May 2014. [Online]. Available: http://cvxr.com/cvx
    [34] B. R. Marks and G. P. Wright, “Technical NoteA General Inner Approximation Algorithm for
    Nonconvex Mathematical Programs,” Operations Research, vol. 26, no. 4, pp. 681–683, Aug.
    1978.
    [35] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric convex approximation method
    with applications to nonconvex truss topology design problems,” Journal of Global Optimization,
    vol. 47, no. 1, pp. 29–51, May 2010.
    [36] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK ; New York: Cambridge
    University Press, 2004.
    [37] J. Lindblom, E. Karipidis, and E. G. Larsson, “Outage rate regions for the MISO IFC,” in 2009
    Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers,
    pp. 1120–1124.
    51
    [38] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels
    with outage-probability specifications,” IEEE Transactions on Wireless Communications,
    vol. 1, no. 1, pp. 46–55, 2002.
    [39] L. Y.Wang, C. L. Chen, and C. Lin, “Energy Efficient Beamforming Design with SWIPT for Heterogeneous
    Cellular Networks,” in 2017 IEEE 18th International Workshop on Signal Processing
    Advances in Wireless Communications (SPAWC).
    [40] Yongwei Huang and D. Palomar, “Rank-Constrained Separable Semidefinite Programming With
    Applications to Optimal Beamforming,” IEEE Transactions on Signal Processing, vol. 58, no. 2,
    pp. 664–678, Feb. 2010.

    QR CODE