簡易檢索 / 詳目顯示

研究生: 陳昭蓉
Chen, Chao-Jung
論文名稱: 以雙盤研磨法製作WC/(Co-Cr-Mo-Ni) 超硬合金之開發研究
Development of WC/(Co-Cr-Mo-Ni) Cemented Carbide by Two-disk Milling
指導教授: 葉均蔚
Yeh, Jien-Wei
口試委員: 蔡哲瑋
Tsai, Tse-Wei
李勝隆
Lee, Sheng-Long
洪健龍
Hung, Chien Long
曹春暉
Tsau, Chuen-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 228
中文關鍵詞: 超硬合金液相燒結雙盤研磨
外文關鍵詞: Hardmetals, Liquid Phase Sintering, Disk Milling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • WC-Co 超硬合金結合了高硬度之硬質碳化物 WC 與較韌的金屬膠結相,因此廣為應用於切削、鑽孔、模具等工具上。
    本研究為降低 WC/Co 超硬合金之成本且改善性質,在 Co 膠結相添加 Cr、Fe、Mo、Ni,並以雙盤研磨法進行粉末製備及液相燒結,並針對 Fe 和 Mo 變量以及碳含量、研磨次數等參數進行燒結試片微結構及性質之比較,期望能抑制 WC 粗化,使合金同時兼具高硬度及優異的破裂韌性。
    本研究表現最優異之成分配比,其硬度-破裂韌性組合可高於文獻中WC/Co超硬合金之 KIC-HV 帶狀分布曲線之上限,優於傳統液相燒結 WC/Co 超硬瓷金。將本研究所開發出的成分配比進行銑刀測試,發現其切削性質優於商用銑刀,表示本研究深具刀具的商業應用潛力。


    WC/Co hardmetals consist of hard carbide, WC, which provides hardness and metal binder phase, Co, which provides toughness. Therefore, hardmetals are widely used in machining, drilling and molding application.
    In this research, in order to cut down the cost of manufacturing WC/Co hardmetal and improve its properties, we add Cr, Fe, Mo, Ni element into the Co binder phase, and use disk milling method and liquid phase sintering to seek the best composition. To inhibit WC grain growth and coarsening, variation of Fe and Mo content, carbon content and milling times are also considered for improvement.
    In this study, we have successfully prepared WC/Co-Cr-Mo-Ni hardmetals. Their toughness-hardness distributions lie above the toughness-hardness band distribution curve limit of traditional WC/Co hardmetals. Their performances in the milling cutting test are also better than that of the commercial milling cutters, which means the WC/ Co-Cr-Mo-Ni system owns the commercial potential in the cutting tools.

    摘 要 I Abstract II 致謝 III 目 錄 VIII 圖目錄 XIV 表目錄 XXII 壹、前言 1 貳、文獻回顧 4 2.1 超硬合金 4 2.1.1 超硬合金簡介 4 2.1.2 超硬合金發展歷史 8 2.1.3 近代超硬合金及未來發展趨勢 12 2.1.4 超硬合金應用 15 2.2 影響超硬合金機械性質因素 16 2.2.1 晶粒尺寸大小 16 2.2.2 金屬膠結相含量 17 2.2.3 金屬膠結相對碳化物的溶解度及潤濕能力 18 2.2.4 多元碳化物的添加 20 2.2.5 WC/WC 界面連續性(Contiguity) 24 2.3 粉末製備方式 26 2.3.1 粉末製備方式簡介 26 2.3.2 高能球磨法 32 2.3.3 噴霧轉化法 36 2.4 燒結方式及機制 38 2.4.1 固相燒結 39 2.4.2 液相燒結 42 2.4.3 燒結方式簡介 49 2.5 高熵合金 54 2.5.1 高熵合金發展背景 54 2.5.2 高熵合金之特性 56 參、實驗方式 59 3.1 成分設計與流程 59 3.2 模擬相圖 61 3.3 雙盤研磨法製程 62 3.3.1 第二代雙盤研磨機台設計與改良 62 3.3.2 雙盤研磨機操作流程 65 3.4 粉末成型及燒結 67 3.4.1 水平球磨 67 3.4.2 生胚成型 67 3.4.3 燒結製程 68 3.5 性質量測與其他分析 71 3.5.1 X-Ray 繞射分析 71 3.5.2 微結構與 EDS 成分分析 71 3.5.3 密度量測 72 3.5.4 硬度與破裂韌性量測 73 3.5.5 銑刀切削測試 75 3.5.6 Image J 影像分析 78 3.5.7 熱傳導係數量測 80 肆、結果與討論 81 4.1 原始粉末形貌 81 4.2 金屬膠結相 Mo 成分變量之結果 83 4.2.1 WC-20M0-0.5CB 88 4.2.2 WC-20M1-0.5CB 92 4.2.3 WC-20M2-0.5CB 97 4.2.4 WC-20M3-0.5CB 102 4.2.5 WC-20M4-0.5CB 107 4.2.6 機械性質與其他性質比較 112 4.3 補碳多寡對於試片之影響 115 4.3.1 表面結構比較 116 4.3.2 XRD 圖比較 120 4.3.3 機械性質與其他性質比較 122 4.4 Fe 元素的影響 128 4.4.1 微結構與 XRD 分析 129 4.4.2 機械性質與其他性質比較 132 4.5 研磨次數之影響 134 4.5.1 微結構與 XRD 分析 135 4.5.2 機械性質與其他性質比較 141 4.6 不同金屬膠結相含量之塊材製備 144 4.6.1 WC-25M1(-Fe) 147 4.6.1.1 微結構與 XRD 分析 147 4.6.1.2 機械性質與其他性質比較 152 4.6.2 WC-15M1(-Fe) 155 4.6.2.1 微結構與XRD分析 155 4.6.2.2 機械性質與其他性質比較 160 4.6.3 WC-12.5M1(-Fe) 163 4.6.3.1 微結構與 XRD 分析 163 4.6.3.2 機械性質與其他性質比較 168 4.6.4 WC-10M1(-Fe) 172 4.6.4.1 微結構與 XRD 分析 172 4.6.4.2 機械性質與其他性質比較 176 4.6.5 WC-10Co-1VC 178 4.6.5.1 微結構與 XRD 分析 178 4.6.5.2 機械性質與其他性質比較 183 4.7 試片硬度與破裂韌性組合總整理 185 4.8 銑刀切削測試 189 4.8.1 一吋試片製備 195 4.8.2 切削 304 不鏽鋼 199 4.8.3 切削 SKD11 冷工具鋼 206 4.8.4 綜合比較 214 伍、結 論 217 陸、本研究貢獻 220 柒、建議未來研究方向 221 捌、引用文獻 222

    [1] Stevenson, W., Metals Handbook 9th ed. . Vol. 7. 1985: ASM, Ohio. 1985.
    [2] Culp, J., D. Huffman, and R.J. Henry, Metals Handbooks,Desk ed. 1985, ASM, Ohio. p. 1. 1985.
    [3] 邱品淞, 以機械合金法與雙盤研磨法製作WC/(Al-Co-Cr-Fe-Ni)超硬合金之開發研究. 2016, 新竹市: 國立清華大學. 183面.
    [4] 林敬翰, 雙盤研磨法製備超硬合金的開發, in 國立清華大學材料科學工程研究所碩士論文. 2012.
    [5] 陳威伶, 盤研磨法細化超硬合金粉末及改善超硬合金性質之研究, in 國立清華大學材料科學工程研究所碩士論文. 2013.
    [6] 鍾孟晃, 盤研磨法及液相燒結製備WC/Al-Co-Cr-Cu-Fe-Ni超硬合金之研究, in 國立清華大學材料科學工程研究所碩士論文. 2014.
    [7] Mari, D., Cermets and hardmetals. Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., Amsterdam. 2001.
    [8] Fang, Z.Z., et al., Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide–a review. International Journal of Refractory Metals and Hard Materials, 2009. 27(2): p. 288-299.
    [9] Exner, H., Physical and chemical nature of cemented carbides. International metals reviews, 2013.
    [10] Ettmayer, P. and W. Lengauer, The story of cermets. Powder Metall. Int., 1989. 21(2): p. 37-38.
    [11] Stevenson, W., Metals Handbook. 1985, ASM,(Metals Park, Ohio, 1985).
    [12] Upadhyaya, A., D. Sarathy, and G. Wagner, Advances in alloy design aspects of cemented carbides. Materials & Design, 2001. 22(6): p. 511-517.
    [13] Andren, H.-O., Microstructure development during sintering and heat-treatment of cemented carbides and cermets. Materials Chemistry and Physics, 2001. 67(1): p. 209-213.
    [14] Akhtar, F., et al., Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC–(W, Ti, Ta) C–6wt% Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 2007. 25(5): p. 405-410.
    [15] Mills, B., Recent developments in cutting tool materials. Journal of materials processing technology, 1996. 56(1): p. 16-23.
    [16] Tracey, V., Nickel in hardmetals. International Journal of Refractory Metals and Hard Materials, 1992. 11(3): p. 137-149.
    [17] 黃坤祥, 粉末冶金學. 2003.
    [18] Schubert, W., A. Bock, and B. Lux, General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. International Journal of Refractory metals and Hard materials, 1995. 13(5): p. 281-296.
    [19] Jia, K., T. Fischer, and B. Gallois, Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites. Nanostructured Materials, 1998. 10(5): p. 875-891.
    [20] Cha, S.I., et al., Mechanical properties of WC–10Co cemented carbides sintered from nanocrystalline spray conversion processed powders. International Journal of Refractory Metals and Hard Materials, 2001. 19(4): p. 397-403.
    [21] Zhang, S., Titanium carbonitride-based cermets: processes and properties. Materials Science and Engineering: A, 1993. 163(1): p. 141-148.
    [22] Peng, Y., H. Miao, and Z. Peng, Development of TiCN-based cermets: mechanical properties and wear mechanism. International Journal of Refractory Metals and Hard Materials, 2013. 39: p. 78-89.
    [23] McCandlish, L.E., B. Kear, and S. Bhatia, Spray conversion process for the production of nanophase composite powders. Patent NumberUS 5352269, 1994.
    [24] Kim, B., et al., Structure and properties of nanophase WC/Co/VC/TaC hardmetal. Nanostructured Materials, 1997. 9(1): p. 233-236.
    [25] 蘇英源 and 郭金國, 粉末冶金學. 2001.
    [26] Bhaumik, S.K., G.S. Upadhyaya, and M.L. Vaidya, A transmission electron microscopy study of WC-10Co cemented carbides with modified hard and binder phases. Materials characterization, 1992. 28(4): p. 241-249.
    [27] Wang, X., Z.Z. Fang, and H.Y. Sohn, Grain growth during the early stage of sintering of nanosized WC–Co powder. International Journal of Refractory Metals and Hard Materials, 2008. 26(3): p. 232-241.
    [28] Seo, O., S. Kang, and E.J. Lavernia, Growth inhibition of nano WC particles in WC-Co alloys during liquid-phase sintering. Materials Transactions, 2003. 44(11): p. 2339-2345.
    [29] Mahmoodan, M., H. Aliakbarzadeh, and R. Gholamipour, Sintering of WC-10% Co nano powders containing TaC and VC grain growth inhibitors. Transactions of Nonferrous Metals Society of China, 2011. 21(5): p. 1080-1084.
    [30] Pang, C., J. Luo, and Z. Guo, Microstructure and properties of ultrafine WC-10Co composites with chemically doped VC. Rare Metals, 2011. 30(2): p. 183-188.
    [31] Jaroenworaluck, A., et al., Segregation of vanadium at the WC/Co interface in VC-doped WC-Co. Journal of materials research, 1998. 13(09): p. 2450-2452.
    [32] Lee, H.R., et al., Role of vanadium carbide additive during sintering of WC–Co: mechanism of grain growth inhibition. Journal of the American ceramic society, 2003. 86(1): p. 152-154.
    [33] Sadangi, R., et al., Grain growth inhibition in liquid phase sintered nanophase WC/Co alloys. Advances in powder metallurgy and particulate materials, 1998. 1: p. 1-51.
    [34] Luyckx, S. and A. Love, The dependence of the contiguity of WC on Co content and its independence from WC grain size in WC–Co alloys. International Journal of Refractory Metals and Hard Materials, 2006. 24(1): p. 75-79.
    [35] Golovchan, V. and N. Litoshenko, On the contiguity of carbide phase in WC–Co hardmetals. International Journal of Refractory Metals and Hard Materials, 2003. 21(5): p. 241-244.
    [36] 陳羽辰, WC與Al0.5CoCrCuFeNi燒結超硬合金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2004.
    [37] 鄭家沐, TiC與Al0.5CoCrCuFeNi燒結瓷金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2005.
    [38] 黃聖閔, TiC與Co1.5CrFeNi1.5Ti0.5燒結瓷金之製程與機械性質研究, in 國立清華大學材料科學工程研究所碩士論文. 2006.
    [39] 曾培原, TiC 與 Co1. 5CrFeNi1. 5TiNb0. 1V0. 1 燒結超硬合金之開發研究. 清華大學材料科學工程學系學位論文, 2009: p. 1-129.
    [40] 葉欲安, 多元高熵碳化物合成及其燒結瓷金之開發研究, in 國立清華大學材料科學工程研究所碩士論文. 2010.
    [41] 蔡佩臻, 多元高熵碳化物(MoNbTiWZr)C及其瓷金的開發研究, in 國立清華大學材料科學工程研究所碩士論文. 2011.
    [42] Enayati, M., G. Aryanpour, and A. Ebnonnasir, Production of nanostructured WC–Co powder by ball milling. International Journal of Refractory Metals and Hard Materials, 2009. 27(1): p. 159-163.
    [43] Suryanarayana, C., Mechanical alloying and milling. Progress in materials science, 2001. 46(1): p. 1-184.
    [44] Fang, Z. and J.W. Eason, Study of nanostructured WC-Co composites. International Journal of Refractory Metals and Hard Materials, 1995. 13(5): p. 297-303.
    [45] Rahaman, M.N., Ceramic processing. 2006: Wiley Online Library.
    [46] 伍祖璁 and 黃錦鐘, 粉末冶金. 1996, 高立圖書有限公司.
    [47] German, R.M., P. Suri, and S.J. Park, Review: liquid phase sintering. Journal of Materials Science, 2009. 44(1): p. 1-39.
    [48] German, R.M., S. Farooq, and C. Kipphut, Kinetics of liquid sintering. Materials Science and Engineering: A, 1988. 105: p. 215-224.
    [49] Porter, D., Easterling,“KE (1992). Phase Transformations in Metals and Alloys,”. London: Chapman k Hall, 1992: p. 147.
    [50] Kim, H.-C., D.-Y. Oh, and I.-J. Shon, Sintering of nanophase WC–15vol.% Co hard metals by rapid sintering process. International Journal of Refractory Metals and Hard Materials, 2004. 22(4): p. 197-203.
    [51] Wei, C., et al., Microstructure and properties of ultrafine cemented carbides—differences in spark plasma sintering and sinter-HIP. Materials Science and Engineering: A, 2012. 552: p. 427-433.
    [52] Upadhyaya, G.S., Cemented tungsten carbides: production, properties and testing. 1998: William Andrew.
    [53] Cha, S.I., S.H. Hong, and B.K. Kim, Spark plasma sintering behavior of nanocrystalline WC–10Co cemented carbide powders. Materials Science and Engineering: A, 2003. 351(1): p. 31-38.
    [54] Deorsola, F.A., et al., Densification of ultrafine WC–12Co cermets by pressure assisted fast electric sintering. International Journal of Refractory Metals and Hard Materials, 2010. 28(2): p. 254-259.
    [55] Huang, S., et al., VC, Cr 3 C 2 and NbC doped WC–Co cemented carbides prepared by pulsed electric current sintering. International Journal of Refractory Metals and Hard Materials, 2007. 25(5): p. 417-422.
    [56] Maizza, G., et al., Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Science and Technology of Advanced Materials, 2007. 8(7): p. 644-654.
    [57] Kessel, H., et al., Rapid sintering of novel materials by FAST/SPS—Further development to the point of an industrial production process with high cost efficiency. FCT Systeme GmbH, 2010. 96528.
    [58] Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
    [59] 蔡哲瑋, ” CuCoNiCrAl x Fe 高熵合金加工變形及微結構之探討. 碩士論文, 國立清華大學材料科學工程研究所, 2003.
    [60] 賴高廷, 葉均蔚, and 陳瑞凱, 高亂度合金微結構及性質探討. 碩士論文, 國立清華大學材料科學工程研究所, 1998.
    [61] 陳宣佑, Al-Cr-Cu-Fe-Mn-Ni 高熵合金變形及退火行為之研究. 2004.
    [62] 黃炳剛, AlCrNbSiTiV 高熵合金及其氮化物濺鍍薄膜之研究. 清華大學材料科學工程學系學位論文, 2009: p. 1-161.
    [63] 郭彥甫, Al-Cr-Fe-Mn-Ni 高熵合金變形及時效行為之研究. 碩士論文, 國立清華大學材料科學工程研究所, 2005.
    [64] 鄭耿豪, 利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜. 2005.
    [65] Rizzo, A., et al., Improved properties of TiAlN coatings through the multilayer structure. Surface and Coatings Technology, 2013. 235: p. 475-483.
    [66] Subramanian, C. and K.N. Strafford, Review of multicomponent and multilayer coatings for tribological applications. Wear, 1993. 165(1): p. 85-95.
    [67] Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 2012. 9(7): p. 671-675.
    [68] Zhou, S., et al., Thermodynamics of the formation of contiguity between ceramic grains and interface structures of Ti(C,N)-based cermets. International Journal of Refractory Metals and Hard Materials, 2009. 27(4): p. 740-746.
    [69] Eso, O., Z. Fang, and A. Griffo, Liquid phase sintering of functionally graded WC–Co composites. International Journal of Refractory Metals and Hard Materials, 2005. 23(4): p. 233-241.
    [70] Eso, O., Z.Z. Fang, and A. Griffo, Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC–Co. International Journal of Refractory Metals and Hard Materials, 2007. 25(4): p. 286-292.
    [71] Gurland, J., A study of the effect of carbon content on the structure and properties of sintered WC-Co alloys. Transactions AIME, 1954. 200: p. 285-290.
    [72] Fernandes, C., A. Senos, and M. Vieira, Control of eta carbide formation in tungsten carbide powders sputter-coated with (Fe/Ni/Cr). International Journal of Refractory Metals and Hard Materials, 2007. 25(4): p. 310-317.
    [73] Pollock, C. and H. Stadelmaier, The eta carbides in the Fe− W− C and Co− W− C systems. Metallurgical Transactions, 1970. 1(4): p. 767-770.
    [74] Li, Y., et al., First-principles study on the stability and mechanical property of eta M 3 W 3 C (M= Fe, Co, Ni) compounds. Physica B: Condensed Matter, 2010. 405(3): p. 1011-1017.
    [75] Takeuchi, A. and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 2005. 46(12): p. 2817-2829.
    [76] Guo, Z., et al., Effect of Mo2C on the microstructure and properties of WC–TiC–Ni cemented carbide. International Journal of Refractory Metals and Hard Materials, 2008. 26(6): p. 601-605.
    [77] Exner, H.E. and J. Gurland, A Review of Parameters Influencing Some Mechanical Properties of Tungsten Carbide–Cobalt Alloys. Powder Metallurgy, 2014. 13(25): p. 13-31.
    [78] Kim, C.-S., T.R. Massa, and G.S. Rohrer, Modeling the relationship between microstructural features and the strength of WC–Co composites. International Journal of Refractory Metals and Hard Materials, 2006. 24(1-2): p. 89-100.
    [79] Schubert, W., et al., Hardness to toughness relationship of fine-grained WC-Co hardmetals. International Journal of Refractory Metals and Hard Materials, 1998. 16(2): p. 133-142.
    [80] Furushima, R., et al., Relationship between hardness and fracture toughness in WC–FeAl composites fabricated by pulse current sintering technique. International Journal of Refractory Metals and Hard Materials, 2014. 42: p. 42-46.
    [81] The technical data of Kyocera cutting tool, Kyocera company, 2016.
    [82] C. Subramanian and K. N. Strafford, "Review of Multicomponent and Multilayer Coatings for Tribological Applications," Wear, 165 (1993) 85-95.

    無法下載圖示 全文公開日期 2022/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE