簡易檢索 / 詳目顯示

研究生: 蔡光裕
Kuang Yue Tsai
論文名稱: 二氧化釩薄膜之機械與光學性質及其光學元件之研究
Investigation on mechanical and optical properties of VO2 thin film and a device thereof
指導教授: 金重勳
Tsung-Shune Chin
謝漢萍
Han-Ping D. Shieh
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 136
中文關鍵詞: 二氧化釩光開關薄膜應力熱變色耐米壓痕
外文關鍵詞: Vanadium dioixde, optical switch, Thin film stress, Thermochromic, Nanoindentation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單斜晶系的二氧化釩經過反覆加熱降溫的過程,會產生可逆的半導體-導體相轉變。隨著此材料的相變化,其光學穿透率、電阻皆會產生很大的變化。以波長1550nm的紅外光為例,在相變化過程一、兩度溫差中,穿透率變化可達50%。此材料的相轉變溫度也可以透過製程改變或摻雜質而調整。因此我們可以利用此材料於相變化過程伴隨的光學與電性變化,作為光或電的開關。隨著光電時代的來臨,此難得的性質使此材料有潛力應用在顯示技術、資訊儲存、光纖通訊上。所以此材料特性的相關研究是重要課題。我們從薄膜配製開始,接著機械性質量測、光學特性量測與探討以及發展新的光驅動方法,從材料的基本性質到應用潛力的研究與探討,期能開發此材料在各領域能更廣泛的被應用。
    首先,發展一種新的反應式濺鍍方法,利用便宜的五氧化二釩粉末壓製靶材,通入氧氣配置二氧化釩薄膜。經由調整基板溫度與通入氧氣的比率,在最佳化條件之下可以在玻璃基板與矽基板上鍍製二氧化釩薄膜。經由X光分析的結果,可以瞭解配置過程中V4O9、V6O13與二氧化釩各種相與配置條件之間的關係。
    殘留應力是造成二氧化釩相轉變溫度變化的主要原因之一。利用奈米壓痕試驗機,可以量測出薄膜的機械性質,進一步用來求得薄膜殘留應力。當薄膜的晶粒大小與壓痕器的針尖半徑相近時,我們發現在固定施力之下計算所得的硬度與楊氏係數會產生變動。這是因為晶粒曲率半徑效應,造成量測穿透深度的變化所造成。隨著穿透深度增加,穿透深度變化的影響力減少,使得硬度與楊氏係數的變動降低。最後,由於晶粒曲率半徑效應的消失,單一壓痕測試法中最淺深度的量測結果,跟利用連續剛性量測法的量測結果可以完全吻合。
    二氧化釩的相轉變溫度隨著鍍製條件與雜質摻雜而改變,一般認為是薄膜的殘留應力與成分不均勻造成的。利用波長1.5微米的雷射量測二氧化釩初鍍膜的相轉變溫度,發現量測結果比文獻紀錄的單晶二氧化釩的相轉變溫度低。從感應耦合電漿原子發射光譜分析儀(ICP)的量測中,證明我們配製的薄膜並無其他雜質。利用X光繞射儀(XRD)的定量分析所得的薄膜殘留應力與電子能譜儀測(ESCA)的鍵結能量測,我們可以用來釐清殘留應力與成分不均勻分別對二氧化釩相轉變溫度變化的影響。從電子能譜儀測得的氧原子1s軌域與釩原子2p3/2 軌域的束縛電子能階差跟相轉變溫度變化量成正比。由此一關係可以推測,相轉變溫度的變化可能是因為氧含量的增加所造成的。隨著室溫下殘留應力造成的釩原子跟氧原子的原子間距不同,相轉變時原子的移動亦會受到影響,進一步使得相轉變溫度與穿透率的遲滯寬度產生變化。
    有別於傳統光調變二氧化釩光開關的方法,本研究建立了一個全光調變系統,無需精密重疊試片上加熱光與偵測光的照射區的,利用此系統驅動二氧化釩的相變化使之作為低耗能的光開關。這個系統包含分波多工光耦合器(WDM)來重合兩束光的路徑,光纖透鏡或是玻璃透鏡組來用聚焦光束在鍍有二氧化釩薄膜的試片上。經由測試證明,利用120 kHz與3 mW的連續加熱方波可以產生同步的連續紅外光訊號波。利用光纖透鏡,13 mW的0.7 ns加熱脈衝即足夠產生紅外光脈衝,進一步證實此系統微小化的可能性。
    本研究對此材料從配製薄膜、機械、光學以及應用相關的研究,證實此材料有著卓越與穩定的光開關性質,期能透過此研究,讓此材料能有更廣泛的應用,也能讓科技研發者的創意有更高的實現性。


    The unique properties of VO2, with large reversible variations of transmittance and resistivity accompanying its phase change upon thermal cycling, provide potential for applications on display technique, data storage and optical communication. For example, a sharp change in transmittance for light of 1550 nm reaches 50% during the phase change within 1-2oC. The transition temperatures of VO2, modified by changing fabrication conditions or doping dopants, show its high flexibilities and demonstrate the importance of research on the properties of VO2. I did the researches on properties and applications of VO2 thin films, started from fabrication, then the measurements and discussion of mechanical and optical properties of the thin films. Finally, I developed a new driving method to utilize VO2 as an IR shutter. I hope the research, from the properties to the driving method of the material, can inspire broader applications of this material.
    In my study, a new deposition process to attain rutile VO2 films of rutile structure from a V2O5 target was developed using reactive oxygen instead of hydrogen. Rutile VO2 films were prepared by adjusting the substrate temperature and oxygen flow ratio under optimum deposition conditions on Si and thick glass substrates. Crystalline phases analyzed by x-ray diffraction show the evolution among V4O9, V6O13, and VO2 films prepared under different deposition conditions.
    Mechanical properties of thin films, used in the derivation of residual stress, can be studied by using a nano-indentation method. The variations of maximum penetration depths under the same maximum load (Pmax), resulted from the grain curvature effect, were found to be the cause of the deviations in estimated hardness and Young’s modulus. The cureves of hardness and Young’s modulus measured at lowest penetration depth, being thought to be free from effect of grain curvature, coincided very well with the curves measured by continuous stiffness measurements mode and demonstrated the model I proposed.
    The transition temperatures (Tt) of VO2 thin films were though to be caused by the residual stress and inhomogeneity of the thin film. The residual stresses in the films quantitatively determined from X-ray diffractometry and inhomogeneity analyzed by ESCA were used to explain this variation. The differences in the binding energy of core electrons 2p1/2 and 2p3/2 of the vanadium atom, possibly caused by oxygen content, were proportional to Tt of the films. The bond length between vanadium and oxygen at room temperature varies with different residual stresses and inhomogineity and, furthermore, affects the movements of both atoms during phase change and hence the Tt and hysteresis span of the transmittance loop of VO2 thin films.
    In order to apply VO2 thin film as in high speed IR shutter, many methods to fast drive the reversible phase change of VO2 were reported. A new high speed IR shutter based on total optical modulation, composed of Wavelength Division Multiplexing (WDM), fiber lens or convex lens system, and a glass sheet with VO2 thin film on it, had been demonstrated to utilize VO2 film without a higher power heating laser and precise optical alignment systems for two beams. The easy installation of the system implies the possibility to highly miniaturize the VO2-based optical shutter. A continuous response of IR signal is detected synchronously with the highest rate of a continuous square heating signal of 3 mW at 120 kHz. A heating pulse of 0.7 ns and 13 mW can be used to stimulate an IR pulse with fiber lens.
    The dissertation has demonstrated the outstanding and stable switching properties of the VO2 material from researches of the fabrications, mechanical properties, optical properties and even driving method of the materials. Furthermore, practical application as a high speed IR shutter has been demonstrated feasible.

    1 BACKGROUND AND MOTIVATION 18 1-1 Overviews of thermochromism 18 1-2 Introduction to thermochromic materials 19 1-2-1 Organic thermochromic materials 19 1-2-2 Polymer thermochromic materials 21 1-2-3 Sol-gel thermochromic materials 21 1-2-4 Inorganic thermochromic materials 22 1-3 Current developments of optical switches 23 1-3-1 Overview 23 1-3-2 MEMS optical switches 25 1-3-4 Bubble switches 27 1-3-5 Thermo-optical switches 29 1-3-6 Liquid-crystal-in-polymer switches 31 1-3-7 Electro-Holographic switches 31 1-4 Microbolometer 33 1-4-1 Introduction of Micro-bolometer 33 1-4-2 Micro-bolometer based on VO2 thin film 34 2 LITERATURE REVIEW 40 2-1 Preparation methods of VO2 40 2-1-1 Preparation of bulk VO2 crystal 40 2-1-2 Preparation of VO2 particles 40 2-1-3 Preparation of VO2 thin films 41 2-1-4 Structure of VO2 42 2-2 Theory of nano-indentation method 44 2-2-1 Measurement by single indentation method 44 2-2-2 Derivation of the stiffness by the CSM method 46 2-3 Optical properties of vanadium dioxide 50 2-3-1 Formation of residual stress in an as-deposited thin film 50 2-3-2 Measurement of residual stress of thin film by sin2□□method 51 2-3-3 Variations of transition temperatures and hysteresis widths of VO2 thin films 59 2-4 Optical Switches 61 3 EXPERIMENTAL 63 3-1 Preparation of target 63 3-2 Facilities for sample preparation 63 3-3 Sample preparation 66 3-4 Characterization of samples 69 3-5 Measurement of optical properties 70 4 PROPERTIES OF VO2 FILMS SPUTTER-DEPOSITED FROM V2O5 TARGET 73 4-1. Preface 73 4-2 Effects of substrate temperatures and oxygen flow ratios on crystalline phases 74 4-3 Effects of oxygen flow ratios on relative amount of different crystalline phases 79 4-4 Grain sizes at different fabrication substrate temperatures 80 4-5 Optical properties of VO2 thin film 80 4-6 Effects of substrates and substrate temperatures on the films 83 5 EFFECT OF GRAIN CURVATURE ON NANO-INDENTATION MEASUREMENTS OF THIN FILMS 85 5-1 Preface 85 5-2 Measurement by CSM mode 86 5-3 Measurement by single indentation 87 5-4 Roughness effects on loading processes at shallow indentation depths 91 5-5 Roughness effects on the deviations of calculated Young’s modulus and hardness 92 5-6 Comparison of experimental results measured by single indentation and CSM method 98 6 EFFECT OF THE AS-DEPOSITED RESIDUAL STRESS ON TRANSITION TEMPERATURES OF VO2 THIN FILMS 100 6-1 Preface 100 6-2 Analyzed results 100 6-3 The intrinsic residual stress of thin films and its effects on microstructure 105 6-4 The extrinsic stress of thin films 106 6-5 The distortion of crystal structure caused by the residual stress 107 7 PROPERTIES OF WDM COUPLED WITH A VO2-BASED IR SHUTTER 112 7-1 Preface 112 7-2 Measured power level at different sample locations 114 7-3 Mechanism of the optical switching 115 7-4 Reducing the deviation between focal points of both beams by using fiber lens 120 8. CONCLUSIONS 125 8-1 Phase evolution of VO2 thin films 125 8-2 Mechanical properties of VO2 thin films 125 8-3 The variation in optical transition temperatures of VO2 films 126 8-4 A total optically modulated VO2 based IR shutter 127 REFERENCES 129

    W. Li, C. Z. Zhu, W. F. Wang and J. P. Wu: J. Func. Mater. 28 (1997) 337.
    V. I.: Minkin, Chem. Rev. 104 (2004) 2751.
    T. Sato, N. Nagayama and M. Yokoyama: J. Mater. Chem. 14 (2004) 287.
    H. Xie, S. O’ Dwyer, J. Corish and D. A. Morton-Blake: Synth. Met. 122 (2001) 287.
    S. Garreau, M. Leclerc, N. Errien and G. Louarn: Macromolecules: 36 (2003) 692.
    D. Levy: Mol. Cryst. Liq. Cryst. Sci. Technol. A 297 (1997) 31.
    A. Seaboth: Proc. SPIE 2779 (1996) 430
    E.-.Z. M. Ebeid and A. M. Donia:J. Phys. Chem. Solids. 49 (1988) 263.
    T. Akitsu and Y. Einaga: Acta crystallogr., Sec. C, Cryst.Struct. Commun. 53 (1997) 1561.
    J. Livage, F. Beteille, C. Roux, M. Chatry and P. Davidson: Acta Materialia 46 (1998) 743.
    M. E. Motamedi, L. J. Hornbeck and K. S. J. Pister: Proc. of SPIE - The Int’l Soc. for Opt. Eng. 3008 (1997) 378.
    C. Marxer, C. Thio, M.-A. Gretillat, O. Anthamatten, R. Baettig, B. Valk, P. Vogel and N. F. de Rooij, IEEE Journal of Micro-Electro Mechanical Systems 6 (1997).
    http://www-samlab.unine.ch/Activities/ Projects/OpticalMEMS/2x2fiber.htm, “2x2 Fiber Optic Switch”, C. Marxer, N. F. de Rooij, Univ. of Neuchâtel, Switzerland.
    http://www.spectraswitch.com/SpectraSwitch LFW.pdf, “Liquidi-Crystal Devices Promise High Performance”, C. Turkatte, R. Albert, Spectraswitch.
    http://www.spectraswitch.com/products/Current%201x2%20datasheet.pdf, “Wave-Walker 2 Optical Switch”, Spectraswitch.
    S. Venkatesh, R. Haven, D. Chen, H. L. Reynolds, G. Harkins, S. Close, M. Troll and J. E. Fouquet: Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest 1 (2001) I414.
    J. E. Fouquet, S. Venkatesh M. Troll D. Chen H. F. Wong and P. W. Barth: Lasers and Electro-Optics Society Annual Meeting-LEOS 2 (1998) 169.
    M. Hoffman, P.Kopka, and E. Voges, ": IEEE Journal of Lightwave Technology,16 (1998) 395.
    http://www.digilens.com/products/alignswitch.htm,“Photonic Chips for the 21th Century”, Digilens Inc.
    A. J. Agranat, G. Bartal, J. Krupnic, B. Pessah, D. Sadot, “The Electroholographic Optical Switch”, white paper Trellis Photonics at: http://www.trellisphotonics.com/ electroholography/white_papers/eh_wpapers_agranat.pdf.
    V. Yu and V. G. Malyarov: J. Opt. Technol 68 (2001) 939
    H. Jerominek, F. Picard, N. R. Swart et al., Proc. SPIE 2746 (1996) 60.
    O. Saint-Pe, D. Dubet, P. Duthil et al., Proc. SPIE 3436 (1998) 593
    H. Jerominek, T. D. Pope, M. Renaud et al., Proc. SPIE 3061 (1997) 236

    T. D. Pope, H. Jerominek, C. Alain et al., Proc. SPIE 3436 (1998) 325.

    H. Jerominek, T. D. Pope, C. Alain et al., Proc. SPIE 4028 (2000) 47.

    C. D. Reintsema, E. N. Grossman, and J. A. Koch, Proc. SPIE 3696 (1999)190.

    V. Yu. Zerov, Yu. V. Kulikov, V. N. Leonov et al., Opt. Zh. 66 (1999) 8 (J. Opt. Technol. 66 (1999) 387)

    L. A. Ladd and W. Paul: Solid State Comm. 7 (1969) 425.
    J. B. MacChesney and H. J. Guggenheim: J. Phys. Chem. Solids, 30 (1969) 225.
    F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros and J. R. Gavarri: J. Phys.
    Chem. Solids 62 (2001) 1229.
    C. Zheng, X. Zhang and J. Zhang: J. Solid State Chem. 156 (2001) 274.
    G. Guzman, F. Beteille, R. Morineau and J. Livage: J. Mater. Chem. 6 (1996) 505.
    S. Lu, L. Hou and F. Gan: Thin Solid Films 353 (1999) 40.
    J. Cui, D Da and W. Jiang: Appl. Surf. Sci. 133 (1998) 225.
    F. Guinneton, L. Sauques, J.-C. Valmaltte, F. Cros and J.-R. Gavarri: Thin Solid Films 446 (2004) 287.
    R. T. Kivaisi and M. Samiji: Solar Energy Mater. & Solar Cells 57 (1999) 141.
    X. Wang, J. Xu, Y. Fei, D. Li, T. Li, Y. Nie, K. Feng and N. Wu: 41 (2002) 312.
    Y. Shigesato, M. Enomoto and H. Odaka: Jpn. J. Appl. Phys. 39 (2000) 6016.
    M. G. Krishna, Y. Debauge and A. K. Bhattacharya: Thin Solid Films 312 (1998) 116.
    C. H. Griffiths and H. K. Eastwood: J. Appl. Phys. 45 (1974) 2201.
    E. Kusano, J. A. Theil and J. A. Thornton: J. Vac. Sci. Technol. A 6 (1998) 1663.
    G. V. Jorgenson and J. C. Lee: Solar Engergy Mater. 14 (1986) 205.
    P. Jin and S. Tanemura: Jpn. J. Appl. Phys. 33 (1994) 1478.
    H. J. Schlag and W. Scherber: Thin Solid Films 366 (2000) 28.
    M. H. Lee and M.-G. Kim: Thin Solid Films 286 (1996) 219.
    P. J. Hood and J. F. Denatale: J. Appl. Phys. 70 (1991) 376.
    F. C. Case: J. Vac. Sci. Technol. A 5 (1987) 1762.
    F. C. Case: J. Vac. Sci. Technol. A 2 (1984) 1509.
    Y. Muraoka, Y. Ueda, Z. Hiroi: J. Phys. Chem. Solids 63 (2002) 965.
    D. H. Youn,J. W. Lee, B. G. Chae, H. T. Kim, S. L. Maeng and K. Y. Kang: J. Appl. Phys. 95 (2004) 1407.
    A. V. Kulkarni and B. Bhushan: Mater. Lett. 29 (1996) 221.
    Operation Menu of MTS nanoindentaion System.
    C. Hudson and R. E. Somekh: J. Vac. Sci. Technol. A 14 (1996) 2169.
    E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro and S. J. Hearne: Phys. Rev. Lett. 88 (2002) 156103.
    F. A. Doljack and R. W. Hoffman: Thin Solid Films 12 (1972) 71.
    Y. Pauleau: Vacuum 61 (2001) 175.
    D. P. Adams, L. J. Partitt, J. C. Bilello, S. M. Yalisove and Z. U. Rek: Thin solid films 266 (1995) 52.
    P. Scardi and Y. H. Dong: Mater. Sci. Forum 347 (2000) 399.
    B. W. Sheldon, K. H. A. Lau and A. Rajamani: J. Appl. Phys. 15 (2001) 5097.
    K. Kitahara, R. Yamazaki, T. Kurosawa, K. Nakajima and A. Moritani: Jpn. J. Appl. Phys. 41 (2002) 5055.
    A. J. Perry, V. Valvoda and D. Rafaja: Thin Solid Films 214 (1992) 169.
    N. Durand, K. F. Badawi and Ph. Goudeau: Thin Solid Films 275 (1996) 168.
    B. Boubeker, J. P. Eymery, V. Branger and Ph. Goudeau: Thin Solid Films 275 (1996) 188.
    Z. B. Zhao, J. Hershberger, S. M. Yalisove and J. C. Bilello: Thin Solid Films 415 (2002) 21.
    I. C. Noyan, T. C. Huang and B. R. York: Crit. Rev. Solid State Mater. Sci. 20 (1995) 125.
    W. R. Lafontaine, C. A. Paszkiet, M. A. Korhonen and C. Y. Li: 6 (1991) 2084.
    J. Lu and D. Retraint: J. Strain Analysis 33 (1997) 127.
    C.H. Ma, J. H. Huang and Haydn Chen: Thin Solid Films, 418, 73 (2002).
    M. Fukuma, S. Zembutsu and S. Miyazawa: Appl. Optics 22, 265 (1983).
    G. A. Nyberg and R. A. Buhrman: J. Vac. Sci. Technol. A 2 (1984) 301.
    J. M. Gregg and R. M.Bowman: Appl. Phys. Lett. 71 (1997) 3649.
    S. Lu, L. Hou and F. Gan: J. Mater. Sci. 28 (1993) 2177.
    D. D. Eden: Optical Processing Systems 185 (1978) 97.
    J. B. Goodenough: J. Solid State Chem. 3 (1971) 490.
    S. Lu, L. Hou and F. Gan: Adv. Mater. 9 (1997) 244.
    B. L. Chamberland: J. Solid State Chem. 7 (1973) 377.
    K. D. Rogers: Powder diffraction 8 (1993) 240.
    G. Andersson: Acta Chem. Scand. 10 (1956) 623
    K. A. Wilhelmi and K. Waltersson: Acta Chem. Scand. 24 (1970) 3409.
    Y. Oka, T. Yao, N. Yamamoto: J. Solid State Chem. 86 (1990) 116.
    T. Yao, H. Jinno: J. Ceram. Soc. Japan. 96 (1989) 1192.
    L. A. Ladd and W. Paul: Solid State Comm. 7 (1969) 425.
    P. J. Burnet and D. S. Rickerby: Thin Solid Film 148 (1987) 41.
    S. Anders, D. L. Calanhan, G. M. Pharr and T. J. Tsui: Surf. Coat. Technol. 94 (1997) 189.
    G. M. Pharr: Mat. Sci. Eng. A 253 (1998) 151.
    T. H. Fang and W. J. Chang: Microelectron. Eng. 65 (2003) 231.
    D. W. Stollberg, J. M. Hampkian, L. Riester and W. B. Carter: Mater. Eng. A 359 (2003) 112.
    E. Wepplemann and M. V. Swain, Thin Solid Films 286 (1996) 111.
    W.C. Oliver and G. M. Pharr: J. Mater. Res. 7 (1992) 1564.
    G. M. Pharr: Mater. Sci. and Eng. A 253 (1998) 151.
    T. Y. Tsui, J. Vlassak and W. D. Nix: J. Mater. Res. 14 (1999) 2204.
    A. K. Bhattacharya and W. D. Nix: J. Solid Structures 24 (1988) 1287.
    G. A. Sawatzky and D. Post: Phys. Rev. B 20 (1979) 1546.
    T. Christmann, B. Felde, W. Niessner, D. Schalch and A. Scharmann: Thin Solid Films 287 134 (1996).
    J. D. Finegan and R. W. Hoffman: J. Appl. Phys. 30 597 (1959).
    F. A. Doljack and R. W. Hoffman: Thin Solid Films 12 71 (1972).
    H. Windischmann: Crit. Rev. Solid State Mater. Sci. 17 (1992) 547.
    L. B. Freund and E. Chason: J. Appl. Phys. 89 (2001) 4866.
    H. P. Martinz and R. Abermann: Thin Solid Films 89, 133 (1982).
    R. Abermann: Thin Solid Films 188 (1990) 385.
    G. Guzman, F. Beteille, R. Morineau and J. Livage: J. Mater. Chem. 6 (1996) 505.
    A. S. Barker, Jr., Chatham, and H. W. Verleur: U.S. Patent 3484722 (1966).
    J. Y. Wong and L. J. Schoennauer: U. S. Patent 4795240 (1989).
    D. C. Mattis: U. S. Patent 3664726 (1972).
    S. Chen, X. Yi, H. Ma, H. Wang, X. Tao, M. Chen and C. Ke: Opt. and Quantum Elec. 35 (2003) 1351.
    E. Sobey, Jr. and Richardson: U. S. Patent 4545641 (1985).
    W. R. Roach: Appl. Phys. Lett. 19 (1971) 453.
    A. A. Bugaev, V.V. Gudyalis, B. P. Zakharchenya, and F. A. Chudnovskll: JEPT Lett. 34 (1981) 430.
    A. W. Smith: Appl. Phys. Lett. 23 (1973) 437.
    D. D. Eden: SPIE 185 (1979) 97.
    D. D. Eden: U. S. Patent 4283113 (1981).
    S. Saitzek, G. Guirleo, F. Guinneton, L. Sauques, S. Villain, K. Aguir, C. Leroux and J. R. Gavarri: Thin Solid Films 449 (2004) 166.
    A. A. Bugaev, V.V. Gudyalis, B. P. Zakharchenya, and F. A. Chudnovskii: JEPT Lett. 34 (1981) 430.
    J. Y. Wong and L. J. Schoennauer: U. S. Patent 4795240 (1989).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE