研究生: |
簡龍璋 Lung-Chang Cheng |
---|---|
論文名稱: |
區間設限資料型態在Cox PH模式下之區域混淆現象和參數估計法的比較 Local Confounding Effect And Estimations Comparison In The Cox PH Model For The Interval Censored Data |
指導教授: |
張德新
Der-Shin Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | Cox PH模式 、區間設限資料 、區域混淆現象 、猜秩法 、猜時法 、Gibbs抽樣法 |
外文關鍵詞: | Cox PH model, Interval censored data, Local confounding effect, Missing-failure time approach, Missing-rank approach, Gibbs sampling scheme |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在倖存分析中,Cox PH模型是一個最基本且用途很廣的模式之一。而區間設限資料(interval censored data)是眾多倖存分析資料型態中較難估計其模式未知參數,因為我們僅能從該區間設限資料中得知包含未知失敗時間(failure time)的時間區間上下限,使的其所能提供參數估計的訊息較其他資料型態要來的少,因此提升了估計參數的困難度。本篇論文主要是在Cox PH模式下使用區間設限資料時提出兩種估計方法:即猜秩法(missing-rank approach)與猜時法(missing-failure time approach)。猜秩法是利用Gibbs抽樣法來生成所有可能的秩,並利用這些秩來估計參數;猜時法是利用生成所有可能的失敗時間,並以羅法(Monte Carlo method)來估計參數。
此外,我們根據Satten (1998) 等人所得到的漸進分配性質,可以得知在某些條件狀況下,會造成估計參數偏誤的區域混淆現象(Local confounding effect)有可能會發生。最後,在三種不同型態的區間設限資料下,我們得到一些猜秩法和猜時法的模擬結果,並進行一些比較與討論。
The missing-rank approach and missing-failure time approach of estimating unknown parameter of the Cox proportional hazards model for the interval censored data are compared in this article. In missing-rank approach, it does not require specification of the baseline hazard function and use a Gibbs sampling scheme to generate rankings for estimating parameters. In missing-failure time approach, the parameters of the baseline function are estimated simultaneously with the regression parameters, and the estimating equation is solved using Monte Carlo techniques. Further using the asymptotic result of Satten et al. (1998), we study the local confounding effect of interval censored data which may cause the estimator bias. Finally, we show some simulation results of comparison and their discussion in three types of data set.
2 Model . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Estimation of β . . . . . . . . . . . . . . . . . . . . 4
3.1 Missing-rank approach . . . . . . . . . . . . . . . 4
3.2 Missing-failure approach . . . . . . . . . . . . . . 9
4 The local confounding effect . . . . . . . . . . . . . . 12
5 Simulation . . . . . . . . . . . . . . . . . . . . . . . 19
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . 27
7 Appendix A . . . . . . . . . . . . . . . . . . . . . . . 29
8 Reference . . . . . . . . . . . . . . . . . . . . . . . 33
Casella, G. and George, E. I. (1992), "Explaining the Gibbs sampler," Journal of the American Statistician, 46, 3, 167-174.
Chang, D. S. and Lee, G. H. (1999), "Estimations in linear regression models with left-truncated and right-censored
data:an empirical process approach," National Tsing Hua University, master thesis.
Efron, B., and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, New York, Chapman & Hall.
Finkelstein, D. M. and Wolfe, R. A. (1985), "A semiparametric model for regression analysis of interval-censored failure time data," Biometrics. 41, 933-945.
Finkelstein, D. M. (1986), "A proportional hazards model for interval-censored failure time data," Biometrics, 42, 845-854.
Fleming, T. R. and Harrington, D. P. (1991), Counting process and survival analysis, New York, Wiley.
Groeneboom, P., and Wellner, J. A. (1992), Information bounds and nonparametric maximum likelihood estimation, Boston, Birkhauser.
Hsieh, F. (1997), "Estimations in homoscedastic linear regression models with censored data: An empirical process approach," The Annals of Statistics, 25, 2665-2681.
Huang, J. (1996), "Efficient estimation for the proportional hazards model with interval censoreing," The Annals of Statistics, 24, 2 540-568.
Huang, J., and Rossini, A. J. (1997), "Sieve Estimation for the proportional-odds failure-time regression model with interval censoring," Journal of the American Statistical Association, 92, 960-967.
Kalbfleisch, J. D., and Prentice, R. L. (1980), The Statistical Analysis of Failure Time Data, New York, Wiley.
Klein, J. P., and Moeschberger, M. L. (1997), Survival Analysis: Techniques for Censored and Truncated Data, New York, Springer.
Kleinbaum, D. G. (1995), Survival Analysis: A Self-Learning Text, New York, Springer.
Lee, C. (1999), "An urn model in the simulation of interval censored failure time data," Statistics & Probability Letters, 45, 131-139.
Li, G. and Zhang, C. H. (1998), "Linear regression with interval censored data," The Annals of Statistics, 26, 4, 1306-1327.
Miller, R. G. (1981), Survival Analysis, New York, Wiley.
Morgan, B. J. T. (1995), Elements of Simulation, New York, Chapman & Hall.
Quan, H. and Tsai, W. Y. (1992), "Jackknife for the proportional hazards model," Journal of Statistical Computation and Simulation,
Rabinowitz, D., Tsiatis A. A. and Aragon, J. (1995), "Regression with interval-censored data," Biometrika, 82, 3, 501-513.
Ross, S. M. (1997), Simulatioin, New York, Academic Press.
Rossini, A. J., and Tsiatis, A. A. (1996), "A semiparametric proportional odds regression model for the analysis of current status data," Journal of the American Statistical Association, 91, 713-721.
Ruppert, D., Reisch, R. L., Deriso, R. B., and Carroll, R. J. (1984), “Optimization using stochastic approximation and Monte Carlo simulation (with application to Harvesting of Atlantic Menhaden),” Biometrics, 40, 535-545.
Satten, G. A. (1996), "Rank-based inference in the proportional hazards model for interval censored data," Biometrika, 83, 2, 355-370.
Satten, G. A., Datta S. and Williamson J. M. (1998), "Inference based on imputed failure times for the proportional hazards model with interval-censored data," Journal of the American Statistical Association, 93, 441, 318-327.
Shen, X. (1998), "Proportional odds regression and sieve maximum likelihood estimation," Biometrika, 85, 1, 165-177.
Sinha, D., Tanner, M. A. and Hall, W. J. (1994), "Maximizatoin of the marginal likelihood of grouped survival data," Biometrika, 81, 1, 53-60.
Tanner, M. A. (1993), Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, New York, Springer.
Tsiatis, A. A. (1981), "A large sample study of Cox's regression model," The Annals of Statistics, 9, 1, 93-108.
Tsiatis, A. A. (1990), “Estimating regression parameters using linear rank tests for censored data,” Annals of Statistics, 18, 354-372
Turnbull, B. W. (1976), "The empirical distribution function with arbitrarily grouped, censored, and truncated data," Journal of the American Statistical Association, 53, 475-481.