簡易檢索 / 詳目顯示

研究生: 董旻翔
Dong, Minxiang
論文名稱: 具有周期性拉伸能力的空氣-液體界面培養仿肺晶片
A Microfluidic Lung Chip for Air-liquid Interface Culture with Periodical Stretching
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員: 陳國聲
Chen, Kuo-Shen
盧向成
Lu, Shiang-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 99
中文關鍵詞: 肺晶片自由表面流周期性應力表面張力
外文關鍵詞: Lung-on-a-chip, Free Surface Flow, Periodical Strain, Surface Tension
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此碩士研究提出一種新的肺晶片設計,旨在體外模擬重建肺器官的相關機械功能,希望未來能用於生物相關研究,主要的目標在發展具有控制氣液界面(ALI)和循環拉伸的關鍵功能的仿肺器官生醫晶片。通過在微流體通道的表面設計不同的表面能,形成穩定的氣液界面,啟動上皮細胞朝向粘膜表型的分化。並且由在主致動通道前方的T形流道產生的一系列液滴,通過表面張力驅動多孔PDMS膜與其上培養的細胞一起向下牽引變形。本研究的實驗結果,驗證當流道具有適當的塗覆並且輸 入壓力低於臨界值時,氣液界面可以保持至少1週。而對於拉伸,厚度約為2\(\mu m\)的PDMS膜在表面張力的作用下可以最大達到0.23的應變,大於一般肺晶片所需的0.1的應變。


    Here a new design of lung chip was developed in this master study which aimed at reconstructing an organ-level lung in vitro with the targeting functions of controlling airliquid interface (ALI) and periodical stretches. By patterning the surface of microfluidic channel with different surface energies, a stable ALI could be formed which could initiate the differentiation of epithelium towards a mucociliary phenotype. The periodical surface tension force induced by a series of moving droplets, which were generated by a T-junction at the front of the main actuation channel, could drive the porous PDMS membrane deforming downwards together with the cells cultured on it. The experimental results demonstrate in our development that the ALI could be maintained at least for one week with a proper coated fluid channel when the input pressure was less than the corresponding critical value. As for the stretching, a maximum strain in three dimensions of 0.23 was approached by a PDMS membrane with a thickness of 2m under the load of surface tension. Our achieved strain rate is larger than 0.1 which was typically used in the
    applications of lung chip[1].

    Contents Abstract i Nomenclature xi Abbreviation xiii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Biological Model . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Tissue Engineering and Organ-on-a-Chip . . . . . . . . . . . . 3 1.1.3 Lung on a Chip . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Reconstituting a Lung Model on Chip . . . . . . . . . . . . . 8 1.3.2 Cell Stretching . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.3 Air-liquid Interface . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.1 Cell Stretching . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.2 Air-liquid Interface . . . . . . . . . . . . . . . . . . . . . . 18 2 Methods 19 2.1 Design Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Air-liquid Interface . . . . . . . . . . . . . . . . . . . . . . 23 2.1.2 Membrane Actuation . . . . . . . . . . . . . . . . . . . . . 32 2.1.3 T-junction . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Materials and Fabrication 43 3.1 Fabrication Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 SU-8 Photo Lithography . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 PMMA Mold Fabrication . . . . . . . . . . . . . . . . . . . . . . . 48 3.4 Soft Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.1 Fabrication of Microfluidic Chip . . . . . . . . . . . . . . . . 50 3.4.2 Imprinting . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Surface Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.1 Hydrophilic Coating . . . . . . . . . . . . . . . . . . . . . . 53 3.5.2 Hydrophobic Coating . . . . . . . . . . . . . . . . . . . . . 54 3.6 Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 Experimental Setup and Operation 57 4.1 Controlled Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 Surface Treatment . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.2 Two-phase Flow . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Membrane Actuation . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 T-junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Results and discussion 65 5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Controlled Interface . . . . . . . . . . . . . . . . . . . . . . 65 5.1.2 Membrane Actuation . . . . . . . . . . . . . . . . . . . . . 69 5.1.3 T-junction . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.4 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 Controlled Interface . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Membrane Actuation . . . . . . . . . . . . . . . . . . . . . 77 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6 Conclusions 80 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Appendix A Force Actuated on a Curved Object 90 Appendix B Plate Deformation 93

    Bibliography
    [1] D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber,“Reconstituting organ-level lung functions on a chip,” Science, vol. 328, no. 5986, pp. 1662–1668, 2010.
    [2] M. Baker, “Tissue models: a living system on a chip,” Nature, vol. 471, no. 7340, pp. 661–665, 2011.
    [3] BCG􂚶GlobaManagementConsultinge. (2017) The decline in r&d productivity. [Online].
    Available: http://image-src.bcg.com/Images/Unlocking-Productivity-Ex1-lg_tcm-64603.png
    [4] J. C. Davila, R. J. Rodriguez, R. B. Melchert, and D. Acosta, “Predictive value of in vitro model systems in toxicology,” Annual review of pharmacology and toxicology, vol. 38, no. 1, pp. 63–96, 1998.
    [5] D. E. Ingber, “Cellular mechanotransduction: putting all the pieces together again,” The FASEB journal, vol. 20, no. 7, pp. 811–827, 2006.
    [6] Bayer-ScienceForABetterLife. (2017) Processos. [Online]. Available:
    https://m.pharma.bayer.com.br/html/images/pesquisa-desenvolvimento/processos-02.jpg
    [7] I. Frerking, A. Günther, W. Seeger, and U. Pison, “Pulmonary surfactant: functions, abnormalities and therapeutic options,” Intensive care medicine, vol. 27, no. 11, pp. 1699–1717, 2001. 83
    [8] D. Huh, H. Fujioka, Y.-C. Tung, N. Futai, R. Paine, J. B. Grotberg, and S. Takayama, “Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems,” Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18 886–18 891, 2007.
    [9] C. K. Thodeti, B. Matthews, A. Ravi, A. Mammoto, K. Ghosh, A. L. Bracha, and D. E. Ingber, “Trpv4 channels mediate cyclic strain–induced endothelial cell reorientation through integrin-to-integrin signaling,” Circulation research, vol. 104, no. 9, pp. 1123–1130, 2009.
    [10] V. Diaz-Zuccarini and P. V. Lawford, “An in silico future for the ngineering of functional tissues and organs,” Organogenesis, vol. 6, no. 4, pp. 245–251, 2010.
    [11] M. J. Lysaght and J. Reyes, “The growth of tissue engineering,” Tissue engineering, vol. 7, no. 5, pp. 485–493, 2001.
    [12] L. G. Griffith and G. Naughton, “Tissue engineering–current challenges and expanding opportunities,”Science, vol. 295, no. 5557, pp. 1009–1014, 2002.
    [13] S. Kaihara, J. Borenstein, R. Koka, S. Lalan, E. R. Ochoa, M. Ravens, H. Pien, B. Cunningham, and J. P. Vacanti, “Silicon micromachining to tissue engineer branched vascular channels for liver fabrication,” Tissue engineering, vol. 6, no. 2, pp. 105–117, 2000.
    [14] J. A. Potkay, “The promise of microfluidic artificial lungs,” Lab on a Chip, vol. 14, no. 21, pp. 4122–4138, 2014.
    [15] S. N. Bhatia and D. E. Ingber, “Microfluidic organs-on-chips,” Nature biotechnology, 2014.
    [16] G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual review of biomedical engineering, vol. 3, no. 1, pp. 335–373, 2001.
    [17] A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2480–2487, 2006.
    [18] J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature, vol. 442, no. 7101, pp. 403–411, 2006.
    [19] I. Meyvantsson and D. J. Beebe, “Cell culture models in microfluidic systems,” Annu. Rev. Anal. Chem., vol. 1, pp. 423–449, 2008.
    [20] R. Baudoin, L. Griscom, M. Monge, C. Legallais, and E. Leclerc, “Development of a renal microchip for in vitro distal tubule models,” Biotechnology progress, vol. 23, no. 5, pp. 1245–1253, 2007.
    [21] A. Carraro, W.-M. Hsu, K. M. Kulig, W. S. Cheung, M. L. Miller, E. J. Weinberg, E. F. Swart, M. Kaazempur-Mofrad, J. T. Borenstein, and Vacanti, “In vitro analysis of a hepatic device with intrinsic microvascular-based channels,” Biomedical microdevices, vol. 10, no. 6, pp.
    795–805, 2008.
    [22] P. J. Lee, P. J. Hung, and L. P. Lee, “An artificial liver sinusoid with a microfluidic endotheliallike barrier for primary hepatocyte culture,” Biotechnology and bioengineering, vol. 97, no. 5, pp. 1340–1346, 2007.
    [23] M. J. Powers, K. Domansky, M. R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K. E. Wack, D. B. Stolz, and R. Kamm, “A microfabricated array bioreactor for perfused 3d liver culture,” Biotechnology and Bioengineering, vol. 78, no. 3, pp. 257–269, 2002.
    [24] S. R. Khetani and S. N. Bhatia, “Microscale culture of human liver cells for drug development,”Nature biotechnology, vol. 26, no. 1, pp. 120–126, 2008.
    [25] C. M. Puleo, W. M. Ambrose, T. Takezawa, J. Elisseeff, and T.-H. Wang, “Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture,” Lab on a Chip, vol. 9, no. 22, pp. 3221–3227, 2009.
    [26] N. J. Douville, P. Zamankhan, Y.-C. Tung, R. Li, B. L. Vaughan, C.-F. Tai, J. White, P. J. Christensen, J. B. Grotberg, and S. Takayama, “Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model,” Lab on a chip, vol. 11, no. 4, pp. 609–619, 2011.
    [27] D. D. Nalayanda, C. Puleo, W. B. Fulton, L. M. Sharpe, T.-H. Wang, and F. Abdullah, “An open-access microfluidic model for lung-specific functional studies at an air-liquid interface,”Biomedical microdevices, vol. 11, no. 5, pp. 1081–1089, 2009.
    [28] D. Napierska, L. C. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J. A. Martens, and P. H. Hoet, “Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells,” Small, vol. 5, no. 7, pp. 846–853, 2009.
    [29] K. H. Benam, R. Villenave, C. Lucchesi, A. Varone, C. Hubeau, H.-H. Lee, S. E. Alves, M. Salmon, T. C. Ferrante, J. C. Weaver, A. Bahinski, G. A. Hamilton, and D. E. Ingber,“Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro,” Nature Methods, vol. 13, no. 2, pp. 151–157, 2015.
    [30] A. O. Stucki, J. D. Stucki, S. R. Hall, M. Felder, Y. Mermoud, R. A. Schmid, T. Geiser, and O. T. Guenat, “A lung-on-a-chip array with an integrated bio-inspired respiration mechanism,”Lab on a Chip, vol. 15, no. 5, pp. 1302–1310, 2015.
    [31] H. Kamble, M. J. Barton, M. Jun, S. Park, and N.-T. Nguyen, “Cell stretching devices as research tools: engineering and biological considerations,” Lab on a Chip, vol. 16, no. 17, pp. 3193–3203, 2016.
    [32] K. Shimizu, A. Shunori, K. Morimoto, M. Hashida, and S. Konishi, “Development of a biochip with serially connected pneumatic balloons for cell-stretching culture,” Sensors and Actuators B: Chemical, vol. 156, no. 1, pp. 486–493, 2011.
    [33] D. Tremblay, S. Chagnon-Lessard, M. Mirzaei, A. E. Pelling, and M. Godin, “A microscale anisotropic biaxial cell stretching device for applications in mechanobiology,” Biotechnology Letters, vol. 36, no. 3, pp. 657–665, 2014.
    [34] J. Kreutzer, L. Ikonen, J. Hirvonen, M. Pekkanenmattila, K. Aaltosetälä, and P. Kallio, “Pneumatic cell stretching system for cardiac differentiation and culture,” Medical Engineering and Physics, vol. 36, no. 4, pp. 496–501, 2013.
    [35] Y. J. Heo, T. Kan, E. Iwase, K. Matsumoto, and I. Shimoyama, “Stretchable cell culture platforms using micropneumatic actuators,” Micro & Nano Letters, vol. 8, no. 12, pp. 865–868, 2013.
    [36] Y. Huang and N. T. Nguyen, “A polymeric cell stretching device for real-time imaging with optical microscopy,” Biomedical Microdevices, vol. 15, no. 6, p. 1043, 2013.
    [37] Y. Kamotani, T. Bersano-Begey, N. Kato, Y. C. Tung, D. Huh, J. W. Song, and S. Takayama,“Individually programmable cell stretching microwell arrays actuated by a braille display,”Biomaterials, vol. 29, no. 17, pp. 2646–2655, 2008.
    [38] K. Sato, S. Kamada, and K. Minami, “Development of microstretching device to evaluate cell membrane strain field around sensing point of mechanical stimuli,” International Journal of Mechanical Sciences, vol. 52, no. 2, pp. 251–256, 2010.
    [39] F. N. Pirmoradi, J. K. Jackson, H. M. Burt, and M. Chiao, “A magnetically controlled mems device for drug delivery: design, fabrication, and testing,” Lab on A Chip, vol. 11, no. 18, pp. 3072–3080, 2011.
    [40] I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and M. Dwm, “Cell deformation cytometry using diode-bar optical stretchers,” Journal of Biomedical Optics, vol. 15, no. 4, p. 047010, 2010.
    [41] D. Chen, R. D. Hyldahl, and R. C. Hayward, “Creased hydrogels as active platforms for mechanical deformation of cultured cells,” Lab on A Chip, vol. 15, no. 4, pp. 1160–1167, 2015.
    [42] Y. Iwadate and S. Yumura, “Cyclic stretch of the substratum using a shape-memory alloy induces directional migration in dictyostelium cells,” Biotechniques, vol. 47, no. 3, p. 757, 2009.
    [43] B. Zhao, J. S. Moore, and D. J. Beebe, “Surface-directed liquid flow inside microchannels,”Science, vol. 291, no. 5506, pp. 1023–6, 2001.
    [44] P. Vulto, S. Podszun, P. Meyer, C. Hermann, A. Manz, and G. A. Urban, “Phaseguides: a paradigm shift in microfluidic priming and emptying,” Lab on A Chip, vol. 11, no. 9, p.1596, 2011.
    [45] S. J. Trietsch, G. D. Israëls, J. Joore, T. Hankemeier, and P. Vulto, “Microfluidic titer plate for stratified 3d cell culture,” Lab on A Chip, vol. 13, no. 18, p. 3548, 2013.
    [46] B. J. Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, 2010.
    [47] D. Cwikel, Q. Zhao, C. Liu, X. Su, and A. Marmur, “Comparing contact angle measurements and surface tension assessments of solid surfaces,” Langmuir, vol. 26, no. 19, pp. 15 289–15 294, 2010.
    [48] M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides,“The pressure drop along rectangular microchannels containing bubbles,” Lab on a Chip, vol. 7, no. 11, pp. 1479–1489, 2007.
    [49] G. Sui, J. Wang, C.-C. Lee, W. Lu, S. P. Lee, J. V. Leyton, A. M. Wu, and H.-R. Tseng,“Solution-phase surface modification in intact poly (dimethylsiloxane) microfluidic channels,”Analytical chemistry, vol. 78, no. 15, pp. 5543–5551, 2006.
    [50] J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Analytical Chemistry, vol. 75, no. 23, p. 6544, 2003.
    [51] G. T. Roman, T. Hlaus, K. J. Bass, T. G. Seelhammer, and C. T. Culbertson, “Sol- gel modified poly (dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics,” Analytical Chemistry, vol. 77, no. 5, pp. 1414–1422, 2005.
    [52] S. Hemmilä, J. V. Cauich-Rodríguez, J. Kreutzer, and P. Kallio, “Rapid, simple, and costeffective treatments to achieve long-term hydrophilic pdms surfaces,” Applied Surface Science, vol. 258, no. 24, pp. 9864–9875, 2012.
    [53] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1552–1574, 1998.
    [54] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic t-junction 􀁩scaling and mechanism of break-up,” Lab on a Chip, vol. 6, no. 3, pp. 437–446, 2006.
    [55] S. P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells. McGraw-hill, 1959.

    無法下載圖示 全文公開日期 2022/12/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE