研究生: |
楊浩廷 Yang, Hao-Ting |
---|---|
論文名稱: |
基底隔震建築動態次結構測試之同步控制系統發展 Development of Synchronisation Controllers for Substructuring Tests of Base-Isolated Substructure Systems |
指導教授: |
杜佳穎
Tu, Jia-Ying |
口試委員: |
葉廷仁
Yeh, Ting-Jen 洪崇展 Hung, Chung-Chan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 次結構系統 、動態測試 、控制器設計 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的在討論動態次結構系統測試與控制器發展,次結構測試概念為將全比例結構待測物做部分分解,不需真正搭建全比例待測試體,僅需以部分數值模擬代替擬真情況,留下不易模擬的部分當作物理次結構進行測試,基於成本、空間及人力及場地多方面考量,次結構系統可成為更有效率的工程結構測試法。成功的次結構測試條件為設計強健的動態次結構控制器使得兩個次結構之接觸面輸出響應一致;本研究以數值次結構基礎框架與輸出基礎框架來設計強健型控制器,以消除外在的干擾或雜訊,使次結構系統能達到良好的同步性。數值基礎框架優點在於,設計時不需知道物理元件的參數;而輸出基礎框架則是無需知道數值模型和物理元件的任何參數,只需量測所需的輸出訊號即可,另外再搭配適應型控制器補償時變、未知之非線性參數與動態,使物理次結構與數值次結構的輸出響應能更加精確同步。
隔震系統常見於地震、土木工程研究領域,本文以基底隔震建築為例,分析擬真系統動態並建立數值模型,採用油壓致動器為激發裝置,磁流變阻尼器為被動隔震裝置,給定真實地震歷時為激發信號,將動態控制器搭配即時運算數值模型進行動態次結構測試。
本論文將從文獻回顧開始,介紹次結構動態測試方法,推展至本論文所使用的數值次結構基礎與輸出基礎動態次結構框架及其動態與控制,接著再介紹適應型控制方法;在仿真系統的章節中,將介紹隔震系統裝置與操作原理,然後進行即時動態次結構測試實驗結果比較與討論;測試結果證明,控制器加入回授增益時能有效降低同步誤差,而適應型控制器能進一步消除非線性誤差,使次結構系統的同步性有更顯著的提升。
[1] F. Aghili, "A mechatronic testbed for revolute-joint prototypes of a manipulator," IEEE Transactions on Robotics, vol. 22, pp. 1265-1273, 2006.
[2] K. Dressler, M. Speckert, and G. Bitsch, "Virtual durability test rigs for automotive engineering," Vehicle System Dynamics, vol. 47, pp. 387–401, 2009.
[3] A. M. Reinhorn, M. Bruneau, S. Chu, X. Shao, and M. Pitman, "Large scale real time dynamic hybrid testing technique–Shake tables substructure testing," Proceedings of ASCE Structures Congress, vol. 457, pp. 457-464, 2003.
[4] A. P. Darby, M. S. Williams, and A. Blakeborough, "Stability and delay compensation for real-time substructure testing," Journal of Engineering Mechanics, vol. 128, pp. 1276-1284, 2002.
[5] D. P. Stoten, J.-Y. Tu, and G. Li, "Adaptive control of generalised dynamically substructured systems," presented at the 17th IFAC World Congress, Seoul, Korea, 2008.
[6] M. I. Wallace, J. Sieber, S. A. Neild, D. J. Wagg, and B. Krauskopf, "Stability analysis of real-time dynamic substructuring using delay differential equation models," in Earthquake Engineering & Structural Dynamics. vol. 34, ed, 2005, pp. 1817-1832.
[7] B. Wu, L. Deng, Z. Wang, and X. Yang, "Stability analysis of central difference method for dynamic real-time substructure testing," in American Control Conference, 2009. ACC '09., 2009, pp. 5216-5221.
[8] P. Y. Lin, P. N. Roschke, C. H. Loh, and C. P. Cheng, "Semi-active controlled base-isolation system with magnetorheological damper and pendulum system," in 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, 2004.
[9] P. Y. Lin, "Shaking table test of a smart base-isolation system with MR damper," in 4th World Conference on Structural Control and Monitoring, San Diego, California, U.S.A., 2006.
[10] D. Shook, P. Y. Lin, T. K. Lin, and P. N. Roschke, "A comparative study in the semi-active control of isolated structures," Smart Materials and Structures, vol. 16, pp. 1433-1446, 2007.
[11] P. Y. Lin, P. Roschke, and C. H. Loh, "System identification and real application of a smart magneto-rheological damper," in Proceedings of the 2005 IEEE International Symposium on Intelligent Control, Limassol, Cyprus, 2005.
[12] T. Jia-Ying, D. P. Stoten, L. Guang, and R. A. Hyde, "A state-space approach for the control of dynamically substructured systems," in Control Applications, (CCA) & Intelligent Control, (ISIC), 2009 IEEE, 2009, pp. 1093-1098.
[13] D. P. Stoten and R. A. Hyde, "Adaptive control of dynamically substructured systems: the single-input single-output case," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 220, pp. 63-79, 2006.
[14] D. P. Stoten, J. Y. Tu, and G. Li, "Adaptive control of generalised dynamically substructured systems," in 17th IFAC World Congress, Seoul, Korea, 2008, pp. 14090–14095.
[15] D. P. Stoten, J. Y. Tu, and G. Li, "Synthesis and control of generalised dynamically substructured systems," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 223, pp. 371-392, 2009.
[16] J. Y. Tu, D. P. Stoten, R. A. Hyde, and G. Li, "A state-space approach for the control of multivariable dynamically substructured systems," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 225, pp. 935-953, November 1, 2011 2011.
[17] J. Y. Tu, "Frameworks for the synthesis of substructured dynamics, substructurability and exact synchronisation theories," Structural Control and Health Monitoring, 2011.
[18] J. Kautsky and N. K. Nichols, "Robust pole assignment in linear state feedback," International Journal of Control, vol. 41, pp. 1129-1155, 1985.
[19] J. Y. Tu, "Development of numerical-substructure-based and output-based substructuring controllers," Structural Control and Health Monitoring, 2012.
[20] J. Y. Jiang, J. Y. Tu, and H. T. Yang, "Control of real-time finite element dynamically substructured systems," in 2012 IEEE Control Applications (CCA) & Intelligent Control (ISIC) Dubrovnik, Croatia, 2009.
[21] D. P. Stoten and R. A. Hyde, "Adaptive control of dynamically substructured systems: the single-input, single-output case," Proc. IMechE, Part I: J. Systems and Control Engineering, vol. 220, pp. 63-79, 2006.
[22] 林沛暘, P. N. Roschke, 羅俊雄, 鍾立來, and C. P. Chang, Semi-Active Control of a Structure with an MR Damper. 國家地震工程研究中心, 2002.
[23] Jangid and Londhe, "Effectiveness of Elliptical Rolling Rods for Base Isolation," Journal of Structural Engineering, vol. 124, pp. 469-472, 1998.
[24] D. Shook, P. Y. Lin, T. K. Lin, and P. N. Roschke, "A comparative study in the semi-active control of isolated structures," in Smart Materials and Structures. vol. 16, ed, 2007, pp. 1433-1446.
[25] L. M. Division, "Designing with MR Fluids," ed: Engineering Note, December 1999.
[26] K. D. Weiss, J. D. Carlson, and D. A. Nixon, "Viscoelastic Properties of Magneto- and Electro- Rheological Fluids," Journal of Intelligent Material Systems and Structures, vol. 5, pp. 772-775, 1994.
[27] M. Nakano, H. Yamamoto, and M. R. Jolly, "Dynamic Viscoelasticity of a Magnetorheological Fluid in Oscillatory Slit Flow," presented at the 6th Int. Conf. on ERF, MRS and Their Applications, Yonezawa, JAPAN, July 1997.
[28] T. H. Zoebl, Fundamentals of Hydraulic Circuitry: Iliffe, 1970.
[29] J. C. Ramallo, H. Yoshioka, and B. F. Spencer, "A two-step identification technique for semiactive control systems," Structural Control and Health Monitoring, vol. 11, pp. 273-289, 2004.
[30] L. Pei-Yang, P. Roschke, and C. H. Loh, "System Identification and Real Application of the Smart Magneto-Rheological Damper," in Intelligent Control, 2005. Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation, 2005, pp. 989-994.
[31] P. Y. Lin, "Shaking table test of a smart base-isolation system with MR damper," presented at the 4th World Conference on Structural Control and Monitoring, San Diego, California, U.S.A, 2006.
[32] D. Stoten, J.-Y. Tu, and G. Li, "Synthesis and control of generalized dynamically substructured systems," Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 223, 2009, pp. 371-392.
[33] J. Y. Tu and J. Y. Jiang, "A numerical-substructure-based approach for the synthesis of substructurability and exact synchronisation control," in 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.