研究生: |
楊正宇 Yang, Cheng-Yu |
---|---|
論文名稱: |
無機鹵素鈣鈦礦太陽能電池之效率及穩定性優化 Optimization of Efficiency and Stability of Inorganic Halide Perovskite Solar Cells |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
孟心飛
Meng, Hsin-Fei 趙宇強 Chao, Yu-Chiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 鈣鈦礦 、溶液製程 、丁基碘化胺 、太陽電池 |
外文關鍵詞: | Perovskite, Solar Cells, solution-processed, BAI |
相關次數: | 點閱:42 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究內容將會針對小面積反式結構鈣鈦礦太陽能電池元件進行開發,由於實驗室先前研究有機太陽能電池以開發小面積的圖形,本實驗將沿用相同的圖形來開發以鈣鈦礦材料為活性層的太陽能電池,為了將鈣鈦礦材料實現在大面積模組上,因此先從小面積開始研究材料本身的特性以及最佳薄膜的條件,達到高效率後以便未來中面積與大面積的開發。
主要所採用的元件結構為 ITO / ZnO / CsPbI2Br(鈣鈦礦)/ P3HT / MoO3/ Ag,改變製程條件來達到最佳效率,同時分析不同製程條件的鈣鈦礦薄膜的膜面狀態,並分別對鈣鈦礦活性層、電動傳輸層進行優化,以改善元件效率。
在本實驗中,會先嘗試不同製程條件,建立一套穩定且達到一定效率的製程,接著針對活性層轉速與膜厚、電洞傳輸層的濃度等條件作優化,藉由測量光電轉換效率來比較並找出最佳效率的條件。
而本實驗還會針對鈣鈦礦使用介面鈍化處理,使用有機胺鹽BAI進行表面鈍化以增加元件的穩定性,觀察整體效率與元件的壽命。
This study focuses on the development of small-area inverted structure perovskite solar cells. Building upon previous research in our laboratory on organic solar cells with small-area patterns, this experiment will utilize the same patterns to develop solar cells using perovskite materials as the active layer. To eventually apply perovskite materials to large-area modules, we begin by investigating the characteristics of the materials and the optimal thin film conditions on a small scale. Once high efficiency is achieved, the findings will facilitate the development of medium and large-area applications.
The primary device structure employed in this research is ITO/ZnO/CsPbI2Br (perovskite)/P3HT/MoO3/Ag. By altering the processing conditions, we aim to achieve the best efficiency. We will analyze the surface states of perovskite films produced under different conditions and optimize both the perovskite active layer and the hole transport layer to enhance device efficiency.
In this experiment, we will first attempt different processing conditions to establish a stable and efficient process. Subsequently, we will optimize parameters such as the spin-coating speed, the thickness of the active layer, and the concentration of the hole transport layer. The conditions yielding the highest efficiency will be identified through measurements of the power conversion efficiency.
Additionally, this study will apply interface passivation treatments to the perovskite layer using the BAI to enhance device stability. The overall efficiency and device lifespan will be observed to determine the effectiveness of this approach.
[1] Ritchie, H. (2019). Global Primary Energy Consumption by Source. Our World in Data.
[2] Gustavsson, L., Nguyen, T., Sathre, R., & Tettey, U. Y. A. (2021). Climate effects of forestry and substitution of concrete buildings and fossil energy. Renewable and Sustainable Energy Reviews, 136, 110435.
[3] Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111.
[4] "Electricity production by source, World" ,our world in data ,2023
[5] "Best Research-Cell Efficiency Chart",National Renewable Energy Laboratory,2023
[6] Chodos, A. (2009). April 25, 1954: Bell labs demonstrates the first practical silicon solar cell. APS News-This month in Physics history.
[7] O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737-740.
[8] Hoppe, H., & Sariciftci, N. S. (2004). Organic solar cells: An overview. Journal of materials research, 19(7), 1924-1945.
[9] Shirakawa, H. (1986). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Chem. Commun., 57, 343.
[10] Coakley, K. M., & McGehee, M. D. (2004). Conjugated polymer photovoltaic cells. Chemistry of materials, 16(23), 4533-4542.
[11] Ghosh, A. K., Morel, D. L., Feng, T., Shaw, R. F., & Rowe Jr, C. A. (1974). Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky‐barrier cells. Journal of Applied Physics, 45(1), 230-236.
[12] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185.
[13] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789-1791.
[14] Wang, D., Wright, M., Elumalai, N. K., & Uddin, A. (2016). Stability of perovskite solar cells. Solar Energy Materials and Solar Cells, 147, 255-275.
[15] Anaya, M., Lozano, G., Calvo, M. E., & Míguez, H. (2017). ABX3 perovskites for tandem solar cells. Joule, 1(4), 769-793.
[16] Leijtens, T., Bush, K., Cheacharoen, R., Beal, R., Bowring, A., & McGehee, M. D. (2017). Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A, 5(23), 11483-11500.
[17] Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society, 131(17), 6050-6051.
[18] Elumalai, N. K., Mahmud, M. A., Wang, D., & Uddin, A. (2016). Perovskite solar cells: progress and advancements. Energies, 9(11), 861.
[19] Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093.
[20] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Park, N. G. (2012). Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 591.
[21] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319.
[22] Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234-1237.
[23] Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398.
[24] Perovskites, O. H. (2004). Efficient hybrid solar cells based on meso-superstructured. Phys. Rev. Lett, 92, 210403.
[25] Song, Z., Watthage, S. C., Phillips, A. B., & Heben, M. J. (2016). Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of photonics for energy, 6(2), 022001-022001.
[26] Chueh, C. C., Li, C. Z., & Jen, A. K. Y. (2015). Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy & Environmental Science, 8(4), 1160-1189.
[27] https://coating.itri.org.tw/technology/hardware/38-roll-to-roll-precision-coater.html
[28] Saliba, M., Matsui, T., Domanski, K., Seo, J. Y., Ummadisingu, A., Zakeeruddin, S. M., ... & Grätzel, M. (2016). Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354(6309), 206-209.
[29] Kulbak, M., Cahen, D., & Hodes, G. (2015). How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. The journal of physical chemistry letters, 6(13), 2452-2456.
[30] Ma, Q., Huang, S., Wen, X., Green, M. A., & Ho‐Baillie, A. W. (2016). Hole Transport Layer Free Inorganic CsPbIBr 2 Perovskite Solar Cell by Dual Source Thermal Evaporation. Advanced Energy Materials, 6(7), 1502202.
[31] Sutton, R. J., Eperon, G. E., Miranda, L., Parrott, E. S., Kamino, B. A., Patel, J. B., ... & Snaith, H. J. (2016). Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Advanced Energy Materials, 6(8), 1502458.
[32] Yuan, Y., Yan, G., Hong, R., Liang, Z., & Kirchartz, T. (2022). Quantifying efficiency limitations in all‐inorganic halide perovskite solar cells. Advanced Materials, 34(21), 2108132.
[33] Zhang, S., Wu, S., Chen, W., Zhu, H., Xiong, Z., Yang, Z., ... & Chen, W. (2018). Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber. Materials today energy, 8, 125-133.
[34] Zai, H., Zhang, D., Li, L., Zhu, C., Ma, S., Zhao, Y., ... & Chen, Q. (2018). Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport. Journal of materials chemistry A, 6(46), 23602-23609.
[35] Chen, W., Chen, H., Xu, G., Xue, R., Wang, S., Li, Y., & Li, Y. (2019). Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 3(1), 191-204.
[36] Byranvand, M. M., Kodalle, T., Zuo, W., Magorian Friedlmeier, T., Abdelsamie, M., Hong, K., ... & Saliba, M. (2022). One‐Step Thermal Gradient‐and Antisolvent‐Free Crystallization of All‐Inorganic Perovskites for Highly Efficient and Thermally Stable Solar Cells. Advanced Science, 9(23), 2202441.
[37] Li, H., & Yin, L. (2020). Efficient Bidentate Molecules Passivation Strategy for High‐Performance and Stable Inorganic CsPbI2Br Perovskite Solar Cells. Solar RRL, 4(10), 2000268.
[38] Pham, N. D., Zhang, C., Tiong, V. T., Zhang, S., Will, G., Bou, A., ... & Wang, H. (2019). Tailoring crystal structure of FA0. 83Cs0. 17PbI3 perovskite through guanidinium doping for enhanced performance and tunable hysteresis of planar perovskite solar cells. Advanced Functional Materials, 29(1), 1806479.
[39] Lin, Y., Bai, Y., Fang, Y., Chen, Z., Yang, S., Zheng, X., ... & Huang, J. (2018). Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. The journal of physical chemistry letters, 9(3), 654-658.
[40] Wu, Y., Zhang, Q., Fan, L., Liu, C., Wu, M., Wang, D., & Zhang, T. (2021). Surface reconstruction-induced efficient CsPbI2Br perovskite solar cell using phenylethylammonium iodide. ACS Applied Energy Materials, 4(6), 5583-5589.
[41] Xiao-Min, L., Yi-Hui, L., Xing-Tao, W., & Yi-Xin, Z. (2019). Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite. Acta Physica Sinica, 68(15),158805.
[42] Lai, L., Liu, G., Zhou, Y., He, X., & Ma, Y. (2024). Modulating Dimensionality of 2D Perovskite Layers for Efficient and Stable 2D/3D Perovskite Photodetectors. ACS Applied Materials & Interfaces, 16(15), 19849-19857.
[43] Li, Y. (2011). Synthesis, Characterization, and Photovoltaic Applications of Mesoscopic Phthalocyanine Structures (Doctoral dissertation, Electrical Engineering and Computer Science Department, South Dakota State University).
[44] Fu, P., Guo, X., Zhang, B., Chen, T., Qin, W., Ye, Y., ... & Li, C. (2016). Achieving 10.5% efficiency for inverted polymer solar cells by modifying the ZnO cathode interlayer with phenols. Journal of materials chemistry A, 4(43), 16824-16829.
[45] Doumon, N. Y., Yang, L., & Rosei, F. (2022). Ternary organic solar cells: A review of the role of the third element. Nano Energy, 94, 106915.