研究生: |
方偉峰 Fang, Wei-Feng |
---|---|
論文名稱: |
微生化反應器之研發與物種速度暨濃度場之同步診測 Research and Application of Micro-bioreactors and Simultaneous Measurement of Species Velocities and Concentrations |
指導教授: |
楊鏡堂
Yang, Jing-Tang 葉孟考 Yeh, Meng-Kao |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 241 |
中文關鍵詞: | 微混合器 、微反應器 、生化反應器 、分離與再結合 、混沌對流 、同步量測技術 、混合品質指數 、氧化還原反應 、共軛焦螢光顯微術 、微粒子影像測速儀 、螢光共振能量轉移 、DNA雜交 、金奈米粒子 、移動鍵結 、晶片實驗室 |
外文關鍵詞: | micromixer, microreactor, bioreactor, split-and-recombination, chaotic mixing, simultaneously measuring techniques, mixing quality index, redox reaction, confocal fluorescence microscopy, micro image particle velocimetry (micro-PIV), fluorescence resonance energy transfer (FRET), DNA hybridization/conjugation, gold nano-particle (Au-NP), mobile conjugation/hybridization, Lab-on-a-Chip (LOC) |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨在研發高效能微流體反應器,可應用於增強DNA雜交反應或其它生化反應,並開發新式的微流體診測技術。研究版圖分三大塊,包含:(1)創新元件的設計、分析與驗證、(2)原創量測技術的開發、(3)元件應用測試— 生化流體的反應試驗。研究結果總結如下:
藉由光罩圖樣的設計,實現連續溝槽微混合器(connected-groove micromixer, CGM),其流道內具有橫跨流道底部與側壁的連續溝槽,可增強流體的橫向運動以及質量導引,進而促進流體混合。實驗結果顯示,當傳統的斜向溝槽微混合器(SGM)在加入側壁溝槽的輔助後,在30 mm內增強流體翻轉能力達10-20 %,證實側壁溝槽增強流體橫向運動的效果。進一步設計具有錯位排列溝槽的微混合器(CGM-2),讓流場產生兩個同向旋轉的螺旋流,螺旋流之間的交互作用引發流體傳輸、切割、混合,CGM-2的混合效能高於SGM約50%。
為因應生化流體混合之複雜性(流體黏滯度範圍大),設計出分離與再結合式微反應器(SAR □-reactor),具有分離與再結合(split-and-recombination, SAR)以及混沌對流(chaotic advection)之混合機制。經由特殊設計之切割結構與匯流流道,讓流場產生大幅度的質量切割與轉移,引起強烈的3D旋轉流來拉扯、扭曲流體介面。經化學反應試驗與黏滯流體混合實驗,證實SAR □-reactor的混合效能是SGM的兩倍,其操作範圍大(雷諾數Re = 0.01-100),特別適用於黏滯流體(□□= 0.000855-0.1 kg/m˙s)的混合反應,可望應用於化工合成與生醫檢測方面。
在實驗量測技術的開發上,首先發展一套微流體混合/反應定量的技術,此技術結合共軛焦螢光顯微術以及原創的定量方法,可達成流體混合圖樣的定量化,進而客觀估算混合長度,過程中提出一通用指數(universal index)— 混合品質指數(mixing quality index, Mqi),用來量化圖樣內流體的混合程度。以交疊流道(overlapping channels)元件當作測試對象,結果顯示:本方法估算元件的混合長度,明顯較一般染料混合實驗所估算的混合長度長而且準確,兩種方法的相對誤差為30-40 %。本技術也實現同時監控兩種相異波長的螢光溶液,清楚拍攝兩流體於元件內的交互作用與橫向運動。
本文所提出的另一套原創的量測技術,結合多重螢光微粒子影像測速儀(micro particle image velocimetry, micro-PIV )與自行開發的粒子計數法,可同步診斷物種(粒子)速度以及濃度場。粒子的速度場由micro-PIV求得,而粒子的濃度場分佈由粒子計數法(particle-counting method)所獲得,濃度場可進一步被量化成混合指數。所開發的粒子計數法,以分水嶺法(watershed-segmentation algorithm)與高斯比重函數(Gaussian weighting function)修正過後,不準度約為± 4%。本技術成功觀察流體2D速度與濃度場,進一步結合共軛焦螢光顯微術,成功重建流道內3D的速度與濃度場的影像。以T形流道當測試對象,其實驗結果與模擬結果相互比較,濃度場與速度場的平均誤差約為5%;混合指數的誤差約為10%,而3D流場的速度與濃度場的輪廓也如模擬所預期,具有不錯的一致性。
最後,本文在開發的反應元件內成功執行生化反應試驗,試驗包含:兩互補DNA片段的雜交反應以及DNA與修飾化金奈米粒子的鍵結反應,以共軛焦螢光顯微術搭配螢光共振能量轉移(fluorescence resonance energy transfer, FRET)原理,完整呈現反應過程並將之定量化,研究過程中,逐步驗證本文所提出之移動鍵結(mobile conjugation/hybridization)的概念。本文於元件內執行的生化試驗,僅需數十秒達成反應平衡,遠低於傳統靜態雜交需耗費數小時以上的時間,證實樣品間移動鍵結的功效,透由流道內結構的設計,確實可增強樣品內分子雜交的速率。
本文主要貢獻:研發性能優異且製程簡單的微流體混合/反應器,貼近工程與實務上的應用,再者,在學術上貢獻,所提出的原創量測技術、設計理念、分析方法以及獨到見解可做為後人參考的依據。期望透由本文的研究脈絡,讓讀者概觀了解過去研究的演進,激發未來研究的靈感。
The purpose of this thesis is to research and develop high performance micro-bioreactors applied to enhance DNA hybridization and other biochemical reactions; novel measuring techniques also proposed in this study. There are three major branches in this thesis, including the design, analysis, and verification of the original devices, the invention of measuring techniques as well as the pilot tests concerning biochemical fluidic reactions in the devices. The research results are summarized as follows:
A novel micromixer named connected-groove micromixer, CGM with connected grooves across the bottom and the sidewall of the channel has been realized by microfabrication using the specific design of mask patterns; the connected grooves have ability to promote the lateral motion and mass conduction of fluids so as to improve fluidic mixing. CGM-2 induces two co-helical flows in the flow field; the interaction of the flows involves mechanisms of cutting, transport, and mixing fluids. The CGM-2 hence possesses better mixing performance than a common device, slanted-groove micromixer, SGM.
Based on the mechanisms involving split-and-recombination (SAR) and chaotic mixing, a novel microreactor named SAR □-reactor was proposed for enhancing biofluidic mixing. The SAR □-reactor with in-plane dividing structure and separated channels enables intensive mass split and transport of fluids occurring in the field so as to induce a strong 3D rotating flow to stretch and distort the material interface. The SAR □-reactor was demonstrated by tests of chemical reactions and of viscous fluidic mixing that has excellent performance superior to that of SGM; the SAR □-reactor could be operated at Reynolds number with a wide range and suitable for viscous fluidic mixing.
The thesis reveals a measuring technique for quantification of microfluidic mixing/reaction by using confocal fluorescence microscopy involving original quantification method. A universal index termed mixing quality index (Mqi) was proposed for quantifying mixing patterns that one can reasonable evaluate a mixing lengths of devices. The mixing lengths of devices estimated by this technique are larger and more precise than that by a common dye-blending test. These techniques also facilitate monitoring the behavior of two fluorescence fluids in the devices. Beside, another original measuring technique encompassing micro particle image velocimetry (micro-PIV) and particle-counting method was proposed to simultaneously diagnose species velocities and concentrations. The velocity field is obtained by micro-PIV; the concentration field is obtained by particle-counting method; a mixing index could be derived from a concentration field. For the particle-counting method, a watershed-segmentation algorithm and Gaussian weight function are utilized to amend counting results so as to reduce uncertainty down to ± 4%. 2D and 3D velocity and concentration fields in a T-shaped channel are successfully observed through this technique by taking advantage of confocal fluorescence microscopy. Comparing to the numerical results, the average errors of concentration field, velocity field and mixing index are around 5, 5, and 10%, respectively. The profiles of velocity and concentration fields derived from the experiments are satisfactorily corresponding with the results of numerical simulation.
Finally, bio-reaction tests including hybridization/conjugation of two complimentary DNA and of DNA and functionalized gold nano-paticles (Au-NPs) were successfully executed in intentional reaction devices. This study thoroughly exhibited reaction and quantification process by using confocal microscopy with fluorescence resonance energy transfer, FRET principle. It requires tens of seconds to fulfill equilibrium for the reactions in the devices; this reaction duration is much shorter than a conventional static hybridization requiring more than several hours. This demonstrates that the efficacy of mobile conjugation of molecules in the devices; the structural design of the devices indeed reinforce the efficiency of bio-reactions.
The main contributions of this thesis comprise realizing novel micromixers/microreactors with high performance and simple fabrication and proffering original measuring techniques, design notions, analytical methods, and insightful viewpoints as significant reference materials for successors and future study. Hopefully, through the content of this thesis, readers could grasp the evolution of this study field and then be inspired to create foresighted research.
Adrian, R. J., 1991, “Particle-imaging techniques for experimental fluid mechanics,” Ann. Rev. Fluid Mech., Vol. 23, pp. 261-304.
Agarwal, A. K., Sridharamurthy, S. S., Beebe, D. J., and Jiang, H., Member, 2005, “Programmable Autonomous Micromixers and Micropumps,” J. Microelectromech. Syst., Vol. 14, pp. 1409-1421
Ahn, Y. C., Jung, W., and Chen, Z., 2008, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip, Vol. 8, pp. 125-133.
Akpa, B. S., Matthews, S. M., Sederman, A. J., Yunus, K., Fisher, A. C., John, M. L., and Gladden, L. F., 2007, “Study of miscible and immiscible flows in a microchannel using magnetic resonance imaging,” Anal. Chem. Vol. 79, pp. 6128-6134.
Aubin, J., Fletcher, D. F., Bertrand, J., and Xuereb, C., 2003, “Characterization of the mixing quality in micromixers,” Chem. Eng. Technol., Vol. 26, pp. 1262–1270.
Aref, H., 1984, “Stirring by chaotic advection,” J. Fluid Mech., Vol. 143, pp. 1-21.
Bau, H. H., Zhong, J., Yi, M., 2001, “A minute magneto hydro dynamic (MHD) mixer,” Sens. Actuator B-Chem., Vol. 79, pp. 207–215.
Beebe, D., Adrian, R. J., Olsen, M. G., Stremler, M. A., Aref, H., and Jo, B. H., 2001, “Passive mixing in microchannels: Fabrication and flow experiments,” Mec. Ind., Vol. 2, pp. 343-348.
Bessoth, F. G., deMello, A. J., and Manz, A., 1999, “Microstructure for efficient continuous flow mixing,” Anal. Commun., Vol. 36, pp. 213-215.
Bhagat, A. A. S., Peterson, E. T. K., and Papautsky, I., 2007, “A passive planar micromixer with obstructions for mixing at low Reynolds numbers,” J. Micromech. Microeng., Vol. 17, pp. 1017-1024.
Bhagat, A. A. S., and Papautsky, I., 2008, “Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles,” J. Micromech. Microeng., Vol. 18, 085005.
Bothe, D., Stemich, C., and Warnecke, H. J., 2006, “Fluid mixing in a T-shaped micro-mixer,” Chem. Eng. Sci., Vol. 61, pp. 2950-2958.
Bottausci, F., Cardonne, C., Meinhart, C., and Mezić, I., “An ultrashort mixing length micromixer: The shear superposition micromixer,” Lab Chip, Vol. 7, pp. 396-398.
Camesasca, M., Kaufman, M., and Manas-Zloczower, I., 2006, “Staggered passive micromixers with fractal surface patterning,” J. Micromech. Microeng., Vol. 16, pp. 2298-2311.
Cha, J., Kim, J., Ryu, S. K., Park, J., Jeong, Y., Park, S., Park, S., Kim, H. C., and Chun, K., 2006, “A highly efficient 3D micromixer using soft PDMS bonding,” J. Micromech. Microeng., Vol. 16, pp. 1778-1782.
Chang, S. and Cho, Y. H., 2005, “Static micromixers using alternating whirls and lamination,” J. Micromech. Microeng., Vol. 15, pp. 1397-1405.
Chang, S. T., Beaumont, E., Persev, D. N., and Velev, O. D., 2008, “Remotely powered distributed microfluidic pumps and mixers based on miniature diodes,” Lab Chip, Vol. 8, pp. 117-124.
Chen, C. K., and Cho, C. C., 2008a, “A combined active/passive scheme for enhancing the mixing efficiency of microfluidic devices,” Chem. Eng. Sci., Vol. 61, pp. 2959-2967.
Chen, C. K., and Cho, C. C., 2008b, “Electrokinetically driven flow mixing utilizing chaotic electric fields,” Microfluid Nanofluid, Vol. 5, pp. 785-793.
Chen, H., and Meiners, J. C., 2004, “Topologic mixing on a microfluidic chip,” Appl. Phys. Lett., Vol. 84, pp. 2193-2195.
Chen, L., Lee, S., Lee, M., Lim, C., Choo, J., Park, J. Y., Lee, S., Joo, S. W., Lee, K. H., and Choi, Y. W., 2008c, “DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes,” Biosens. Bioelectron., Vol. 23, pp. 1878-1882.
Chen, L., Wang, G., Lim, C., Seong, G. H., Choo, J., Lee, E. K., Kang, S. H., and Song, J. M., 2008d, “Evaluation of passive mixing behaviors in a pillar obstruction poly(dimethylsiloxane) microfluidic mixer using fluorescence microscopy,” Microfluid Nanofluid, DOI 10.1007/s10404-008-0386-1.
Chun, H., Kim, H. C., and Chung, T. D., 2008, “Ultrafast active mixer using polyelectrolytic ion extractor,” Lab Chip, Vol. 8, pp. 764-771.
Chung, C. K., and Shih, T. R., 2007, “A rhombic micromixer with asymmetrical flow for enhancing mixing,” J. Micromech. Microeng., Vol. 17, pp. 2495-2504.
Chung, C. K., and Shih, T. R., 2008, “Effect of geometry on fluid mixing of the rhombic micromixers,” Microfluid. Nanofluid., Vol. 4, pp. 419-425.
Cola, B. A., Schaffer, D. K., Fisher, T. S., and Stremler, M. A., 2006, “A Pulsed Source-Sink Fluid Mixing Device,” J. Microelectromech. Syst., Vol. 15, pp. 259-266.
Coleman, J. T., and Sinton, D., 2005, “A sequential injection microfluidic mixing strategy,” Microfluid. Nanofluid., Vol. 1, pp. 319-327.
Coleman, J. T., McKechnie, J., and Sinton, D., 2006, “High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion,” Lab Chip, Vol. 6, pp. 1033-1039.
Cotí, K. K., Wang, Y., Lin, W. Y., Chen, C. C., Yu, Z. T. F., Liu, K., Shen, C. K. F., Selke, M., Yeh, A., Lu, W., and Tseng, H. R., 2008, “A dynamic micromixer for arbitrary control of disguised chemical selectivity,” Chem. Commun., pp. 3426-3428.
Cortes-Quiroz, C. A., Zangeneh, M., and Goto, A., 2009, “On multi-objective optimization of geometry of staggered herringbone micromixer,” Microfluid. Nanofluid., Vol. 7, pp. 29-43.
Cussler, E. L., 1984, “Diffusion Mass Transfer in Fluid Systems,” Cambridge University Press, New York.
deMello, A. J., 2006, “Control and detection of chemical reactions on microfluidic systems,” Nature, Vol. 442, pp. 394-402.
Demers, L. M., Mirkin, C. A., Mucic, R. C., Reynolds, R. A., Letsinger, R. L., Elghanian, R., and Viswanadham, C., 2000,“A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles,” Anal. Chem., Vol. 72, pp. 5535-5541.
den Toonder, J., Bos, F., Broer, D., Filippini, L., Gillies, M., de Goede, J., Mol, T., Reijme, M., Talen, W., Wilderbeek, H., Khatavkar V., and Anderson, P., 2008, “Artificial cilia for active micro-fluidic mixing,” Lab Chip, Vol. 8, pp. 533-541.
Dittrich, P. S., and Manz, A., 2006, “Lab-on-a-chip: microfluidics in drug discovery,” Nature, Vol. 5, pp.210-218.
Drott, J., Lindström, K., Rosengren, L., and Laurell, T., 1997, “Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities,” J. Micromech. Microeng., Vol. 7, pp. 14-23.
Foley, J. O., Mashadi-Hossein, A., Fu, E., Finlayson, B. A., and Yager, P., 2008, “Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel,” Lab Chip, Vol. 8, pp. 557-564.
Frenz, L., Harrak, A. E., Pauly, M., Bégin-Colin, S., Griffiths, A. D., and Baret, J. C., 2008, “Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles,” Angwe. Chem. Int. Ed., Vol. 47, pp. 6817-6820.
Fries, D. M., and von Rohr, P. R., 2009, “Liquid mixing in gas–liquid two-phase flow by meandering microchannels,” Chem. Eng. Sci., Vol. 64, pp. 1326-1335.
Fu, L. M., Yang, R. J., Lin, C. H., and Chien, Y. S., 2005, “A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency,” Electrophoresis, vol. 5, pp. 1814-1824.
Garstecki, P., Fischbach, M. A., and Whitesides, G. M., 2005, “Design for mixing using bubbles in branched microfluidic channels,” Appl. Phy. Lett., Vol. 86, 244108.
Garstecki, P., Fuerstman, M. J., Fischbach, M. A., Sia, S. K., and Whitesides, G. M., 2005, “Mixing with bubbles-a practical technology for use with portable microfluidic devices,” Lab Chip, Vol. 6, pp. 207-212.
Glasgow, I., Lieber, S., and Aubry, N., “Parameters Influencing Pulsed Flow Mixing in Microchannels,” Anal. Chem., Vol. 76, pp. 4825-4832.
Gobby, D., Angeli, P., and Gavriilidis, A., 2001, “Mixing characteristics of T-type microfluidic mixers,” J. Micromech. Microeng., Vol. 11, pp. 126-132.
Günther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M. A., and Jensen, K. F., 2005, “Micromixing of miscible liquid in segmented gas-liquid flow,” Langmuir. Vol. 21, pp. 1547-1555.
Hardt, S., and Schönfeld, F., 2003, “Laminar mixing in different interdigital micromixers: I. numerical simulations,” AIChE J., Vol. 49, No. 3, pp. 578-584.
Harel, E., Hilty, C., Koen, K., McDonnell, E. E., and Pines, A., 2007, “Time-of-flight flow imaging of two-component flow inside a microfluidic chip,” Phy. Rev. Lett., Vol. 98, 017601.
Harnett, C. K., Templeton, J., Dunphy-Guzman, K. A., Senousya, Y. M., and Kanouff, M. P., 2008, “Model based design of a microfluidic mixer driven by induced charge electroosmosis,” Lab Chip, Vol. 8, pp. 565-572.
Hatch, A., Kamholz, A., Hawkins, K., Munson, M., Shilling, E., Weigl, B. H., and Yager, P., 2001, “A rapid diffusion immunoassay in a T-Sensor,” Nat. Biotechnol., Vol. 19, pp. 461-465.
He, B., Burke, B. J., Zhang, X., Zhang, R., and Regnier, F. E., 2001, “A picoliter-volume mixer for microfluidic analytical systems,” Anal. Chem., Vol. 73, pp. 1942-1947.
Hessel, V., Hardt, S., Löwe, H., and Schönfeld, F., 2003, “Laminar mixing in different interdigital micromixers: I. experimental characterization,” AIChE J., Vol. 49, No. 3, pp. 566-577.
Hirono, T., Arimoto, H., Okawa, S., and Yamada, Y., 2008, “Microfluidicimage cytometry for measuring number and sizes of biological cells flowing through a microchannel using the micro-PIV technique,” Meas. Sci. Technol., Vol. 19, 025401.
Hisamoto, H., Saito, T., Tokeshi, M., Hibara, A., Kitamori, T., 2001, “Fast and high conversion phase-transfer synthesis exploiting the liquid–liquid interface formed in a microchannel chip,” Chem. Commun., pp. 2662-2663.
Hogan, J., 2006, “A little goes a long way,” Nature, Vol. 442, pp. 351-352.
Hong, C. C., Choi, J. W., and Ahn, C. H., 2004, “A novel in-plane passive microfluidic mixer with modified Tesla structures,” Lab Chip, Vol. 4, pp. 109-113.
Hossain, S., Ansari, M. A., and Kim, K. Y., 2009, “Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel,” Chem. Eng. J., Vol. 150, pp. 492-501.
Howell, P. B., Mott, D. R., Fertig, S., Kaplan, C. R., Golden, J. P., Oran, E. S., and Ligler, F. S., 2005, “A microfluidic mixer with grooves placed on the top and bottom of the channel,” Lab Chip Vol. 5, pp. 524–530.
Howell, P. B., Mott, D. R., Ligler, F. S., Golden, J. P., Kaplan, C. R., and Oran, E. S., 2008, “A combinatorial approach to microfluidic mixing,” J. Micromech. Microeng., Vol. 18, 115019.
Hsiung, S. K., Lee, C. H., Lin, J. L., and Lee, G. B., “Active micro-mixers utilizing moving wall structures activated pneumatically by buried side chambers,” J. Micromech. Microeng., Vol. 17, pp. 129-138.
Hsu, C. H., Folch, A., 2006, “Spatio-temporally-complex concentration profiles using a tunable chaotic micromixer,” Appl. Phys. Lett., Vol. 89, 144102.
Huang, S. H., Wang, S. K., Khoo, H. S., and Tseng, F. G., 2007, “AC electroosmotic generated in-plane microvortices for stationary or continuous fluid mixing,” Sens. Actuator B-Chem., Vol. 125, pp. 326-336.
Ito, Y., and Komori, S., 2006, “A Vibration Technique for Promoting Liquid Mixing and Reaction in a Microchannel,” AIChE J., Vol. 52, pp. 3011-3017.
Jacobson, S. C., Mcknight, T. E., and Ramsey, J. M., 1999, “Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing,” Anal. Chem., Vol. 71, pp. 4455-4459.
Jähnisch, K., Hessel, V., Löwe, H., and Baerns, M., 2004, “Chemistry in microstructured reactors,” Angew. Chem. Int. Ed., Vol. 43, pp. 406-446.
Jen, C. P., Wu, C. Y., Lin, Y. C., and Wu, C. Y., 2003, “Design and simulation of the micromixer with chaotic advection in twisted microchannels,” Lab Chip, Vol. 3, pp. 77-81.
Jeon, M. K., Kim, J. H., Noh, J., Kim, S. H., Park, H. G., and Woo, S. I., 2005, “Design and characterization of a passive recycle micromixer,” J. Micromech. Microeng., Vol. 15, pp. 346-350.
Jiang, F., Drese, K. S., Hardt, S., Küpper, M., and Schönfeld, F., 2004, “Helical flows and chaotic mixing in curved micro channels,” AIChE J., Vol. 50, pp. 2297-2305.
Jiang, X. Y., Ng, J. M. K., Stroock, A. D., Dertinger, S. K. W., and Whitesides, G. M., 2003, “A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens,” J. Am. Chem. Soc., Vol. 125, pp. 5294-5295.
Johnson, T. J., Ross, D., and Locascio, L. E., 2002, “Rapid microfluidic mixing,” Anal. Chem., Vol. 74, pp. 45-51.
Jonkman, J. E. N., and Stelzer, E. H. K., 2002, “Resolution and contrast in confocal and two-photon microscopy, in A. Diaspro (ed.), Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, New York: Wiley-Liss, pp. 101-125.
Kamholz, A. E., Weigl, B. H., Finlayson, B. A., and Yager, P., 1999, “Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor,” Anal. Chem., Vol. 71, pp. 5340-5347.
Kane, A. S., Hoffmann, S., Baumgärtel, P., Seckler, R., Reichardt, G., Horsley, D. A., Schuler, B., and Bakajin, O., 2008, “Microfluidic Mixers for the Investigation of Rapid Protein Folding Kinetics Using Synchrotron Radiation Circular Dichroism Spectroscopy,” Anal. Chem. Vol. 80, pp. 9534-9541.
Kang, T. G., Hulsen, M. A., Anderson, P. D., den Toonder, J. M. J., and Meijer, H. E. H., 2007, “Chaotic mixing induced by a magnetic chain in a rotating magnetic field,” Phys. Rev. E, Vol. 76, 066303.
Kang, T. G., Singh, M. K., Kwon, T. H., and Anderson, P. D., 2008, “Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer,” Microfluid Nanofluid, Vol. 4, pp. 589-599.
Kanno, K. I., Maeda, H., Izumo, S., Ikuno, M., Takeshita, K., Tashiro, A., and Fujii, M., 2002, “Rapid enzymatic transglycosylation and oligosaccharide synthesis in a microchip reactor,” Lab Chip, Vol. 2, pp. 15-18.
Kawazumi, H., Tashiro, A., Ogino, K., and Maeda, H., 2002, “Observation of fluidic behavior in a polymethylmethacrylate-fabricated microchannel by a simple spectroscopic analysis,” Lab Chip, Vol. 2, pp. 8-10.
Kikutani, Y., Hibara, A., Uchiyama, K., Hisamoto, H., Tokeshi, M., and Kitamori, T., 2002, “Pile-up glass microreactor,” Lab Chip, Vol. 2, pp. 193-196.
Kim, D. J., Oh, H. J., Park, T. H., Choo, J. B., and Lee, S. H., 2005a, “An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions,” Analyst, Vol. 130, pp. 293-298.
Kim, D. S., Lee, I. H., Kwon, T. H., and Cho, D. W., 2004a, “A barrier embedded chaotic micromixer,” J. Micromech. Microeng., Vol. 14, pp. 798-805.
Kim, D. S., Lee, I. H., Kwon, T. H., and Cho, D. W., 2004b, “A barrier embedded Kenics micromixer,” J. Micromech. Microeng., Vol. 14, pp. 1294-1301.
Kim, D. S., Lee, S. H., Kwon, T. H., and Ahn, C. H., 2005b, ”A serpentine laminating micromixer combining splitting/recombination and advection,” Lab Chip, Vol. 5, pp. 739-747.
Kim, T., and Kwon, S., 2006, “Design, fabrication and testing of a catalytic microreactor for hydrogen production,” J. Micromech. Microeng., Vol. 16, pp. 1760-1768.
Knight, J. B., Vishwanath, A., Brody, J. P. and Austin, R. H., 1998, “Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds,” Phy. Rev. Lett., Vol. 80, pp. 3863-3866.
Koutny, L. B., Schmalzing, D., Taylor, T. A., and Fuchs, M., 1996, “Microchip electrophoretic immunoassay for serum cortisol,” Anal. Chem., Vol. 68, pp. 18-22.
Lee, C. Y., Lee, G. B., Fu, L. M., Lee, K. H., and Yang, R. J., 2004, “Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect,” J. Micromech. Microeng., Vol. 14, pp. 1390-1398.
Lee, S. J., and Kim, S., 2009, “Advanced particle-based velocimetry techniques for microscale flows,” Microfluid Nanofluid, Vol. 6, pp. 577-588.
Lee, S. W., and Lee, S. S., 2008, “Rotation effect in split and recombination micromixing,” Sens. Actuator B-Chem., Vol. 129, pp. 364–371.
Lee, S. W., Kim, D. S., Lee, S. S. and Kwon, T. H., 2006, “A split and recombination mcromixer fabricated in a PDMS three-dimensional structure,” J. Micromech. Microeng., Vol. 16, pp. 1067-1072.
Liau, A., Karnik, R., Majumdar, A., and Cate, JHD., 2005, “Mixing crowded biological solutions in milliseconds,” Anal. Chem., Vol. 77, pp. 7618-7625.
Lin, C. H., Fu, L. M., and Chien, Y. S., 2004, “Microfluidic T-form mixer utilizing switching electroosmotic flow,” Anal. Chem., Vol. 76, pp. 5265-5272.
Lin, J. L., Lee, K. H., and Lee, G. B., 2005, “Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials,” Electrophoresis, Vol. 26, pp. 4605-4615.
Lin, J. L., Lee, K. H., and Lee, G. B., 2006, “Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes,” J. Micromech. Microeng., Vol. 16, pp. 757-768.
Lin, Y. C., Chung, Y. C., and Wu, C. Y., 2007, “Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel,” Biomed. Microdevices, Vol. 9, pp. 215-221.
Lindken, R., Westerweel, J., and Wieneke, B., 2006, “Stereoscopic micro particle image velocimetry,” Exp. Fluids, Vol. 41 pp. 161–171
Liu, R. H., Lenigk, R., Druyor-Sanchez, R. L., Yang, J., and Grodzinski, P., 2003, “Hybridization enhancement using cavitation microstreaming,” Anal. Chem., Vol. 75, pp. 1911-1917.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J., 2000, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst., Vol. 9, pp. 190-197.
Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M., and Grodzinski, P., 2002, “Bubble-induced acoustic micromixing,” Lab chip, Vol. 2, pp. 151-157.
Liu, D., Garimella, S. V., and Wereley, S. T., 2005, “Infrared micro-particle image velocimetry in silicon-based microdevices,” Exp. Fluids., Vol. 38, pp. 385–392.
Löb, P., Pennemann, H., Hessel, V., 2004, “g/l-Dispersion in interdigital micromixers with different mixing chamber geometries,” Chem. Eng. J., Vol. 101, pp. 75-85.
Löb, P., Pennemann, H., Hessel, V., and Men, Y., 2006, “Impact of fluid path geometry and operating parameters on l/l-dispersion in interdigital micromixers,” Chem. Eng. Sci., Vol. 61, pp. 2959-2967.
Lu, L. H., Ryu, K. S., and Liu, C., 2002, “A Magnetic Microstirrer and Array for Microfluidic Mixing,” J. Microelectromech. Syst., Vol. 11, pp. 462-469.
Lynn, N. S., Henry, C. S., Dandy, D. S., “Microfluidic mixing via transverse electrokinetic effects in a planar microchannel,” Microfluid Nanofluid, Vol. 5, pp. 493-505.
Ma, Y., Sun, C. P., Fields, M., Li, Y., Haake, D. A., Churchill, B. M., and Ho, C. M., “An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure,” J. Micromech. Microeng., Vol. 18, 045015.
Mair, D. A., Schwei, T. R., Dinio, T. S., Svec, F., and Fréchet, J. M. J., 2009, “Use of photopatterned porous polymer monoliths as passive micromixers to enhance mixing efficiency for on-chip labeling reactions,” Lab Chip, Vol. 9, pp. 877-883.
Matsumoto, R., Zadeh, H. F., and Ehrhard, P., 2005, “Quantitative measurement of depth-averaged concentration fields in microchannels by means of a fluorescence intensity method,” Microfluid Nanofluid, Vol. 39, pp. 722-729.
Meinhart, C. D., Wereley, S. T., and Gray, M. H. B., 2000, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol., Vol. 11, pp. 809-814.
Mengeaud, V., Josserand, J., and Girault, H. H., 2002, “Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study,” Anal. Chem., Vol. 74, pp. 4279-4286.
Munson, M. S., and Yager, P., 2004, “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer,” Anal. Chim. Acta., Vol. 507, pp. 63-71.
Nguyen, N. T., and Huang, X., 2005a, “Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modeling and experiment,” Lab Chip, Vol. 5, pp. 1320-1326.
Nguyen, N. T., and Wu, Z., 2005b, “Micromixers - a Review,” J. Micromech. Microeng., Vol. 15, pp. R1-R16.
Niu, X., and Lee, Y. K., 2003, “Efficient spatial-temporal chaotic mixing in microchannels,” J. Micromech. Microeng., Vol. 13, pp. 454-462.
Niu, X., Liu, L., Wen, W., and Sheng, P., 2006a, “Active microfluidic mixer chip,” Appl. Phys. Lett., Vol. 88, 153508.
Niu, X., Liu, L., Wen, W., and Sheng, P., 2006b, “Hybird approach to high-frequency microfluidic mixing,” Phys.Rev. Lett., Vol. 97, 044501.
Moctar, A. O. E., Aubry, N., and Batton, J., 2003, “Electro-hydrodynamic micro-fluidic mixer,” Lab Chip, Vol. 3, pp. 273-280.
Oddy, M. H., Santiago, J. G., and Mikkelsen, J. C., 2001, “Electrokinetic instability micromixing,” Anal. Chem., Vol. 73, pp. 5822-5832.
Oh, D. W., Jin, J. S., Choi, J. H., and Kim, H. Y., 2007, “A microfluidic chaotic mixer using ferrofluid,” J. Micromech. Microeng., Vol. 17, pp. 2077-2083.
Ottino, J. M., 1989, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge, Cambridge University Press, UK.
Paik, P., Pamula, V. K., Pollack, M. G., and Fair, R. B., 2003a, “Electrowetting-based droplet mixers for microfluidic systems,” Lab Chip, Vol. 3, pp. 28-33.
Paik, P., Pamula, V. K., and Fair, R. B., 2003b, “Rapid droplet mixers for digital microfluidic systems,” Lab Chip, Vol. 3, pp. 253-259.
Pappaert, K., Vanderhoeven, J., Hummelen, P. V., Dutta, B., Clicq, D., Baron, G. V., and Desmet, G., 2003, “E nhancement of DNA micro-array analysis using a shear-driven micro-channel flow system,” J. Chromatogr. A, Vol. 1014, pp. 1-9.
Park, J. M., Kim, D. S., Kang, T. G., and Kwon, T. H., 2008, “Improved serpentine laminating micromixer with enhanced local advection,” Microfluid. Nanofluid., Vol. 4, pp. 513-523.
Park, J. S., Choi, C. K., and Kihm, K. D., 2004a, “Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM),” Exp. Fluids., Vol. 37, pp. 105–119.
Park, S. J., Kim, J. K., Park, J., Chung, S., Chung, C., and Chang, J. K., 2004b, “Rapid three-dimensional passive rotation micromixer using the breakup process,” J. Micromech. Microeng., Vol. 14, pp. 6-14.
Park, T., Lee, S., Seong, G. H., Choo, J., Lee, E. K., Kim, Y. S., Ji, W. H., Hwang, S. Y., Gweon, D. G., and Lee, S., 2005, “Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study,” Lab Chip, Vol. 5, pp. 437-442.
Pattekar, A. V., and Kothare, M. V., 2004, “A microreactor for hydrogen production in micro fuel cell application,” J. Microelectromech. Syst., Vol. 13, pp. 7-18.
Qian, S., and Bau, H. H., 2005, “Magneto-hydrodynamic stirrer for stationary and moving fluids,” Sens. Actuator B-Chem., Vol. 106, pp. 859–870.
Raffel, M., Willert, C. E. and Kompenhans, J., Particle Image Velocimetry, Springer-Verlag Berlin Heidelberg, 1998.
Roy, T., Sinha, A., Chakraborty, S., Ganguly, R.,and Puri, I. K., 2009, “Magnetic microsphere-based mixers for microdroplets,” Phys. Fluids, Vol. 21, 027101.
Ryu, S. K., Shaikh, K., Goluch, E., Fan, Z., and Liu, C., 2004, “Micro magnetic stir-bar mixer integrated with parylene microfluidic channels,” Lab Chip, Vol. 4, pp. 608-613.
Sasaki, N., Kitamori, T., and Kim, H. B., 2006, “AC electroosmotic micromixer for chemical processing in a microchannel,” Lab Chip, Vol. 6, pp. 550-554.
Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J., and Adrian, R. J., 1998, “A particle image velocimetry system for microfluidics,” Exp. Fluids, Vol. 25, pp. 316–319.
Sato, H., Ito, S., Tajima, K., Orimoto, N., and Shoji, S., 2005, “PDMS microchannels with slanted grooves embedded in three walls to realize efficient spiral flow,” Sens. Actuator A-Phys., Vol. 119, pp. 365–371.
Schönfeld, F., Hessel, V. and Hofmann, C., 2004, “An optimized split-and-recombine micro-mixer with uniform ‘chaotic’ mixing,” Lab Chip, Vol. 4, pp. 65-69.
Schwesinger, N., Frank, T., and Wurmus, H., 1996, “A modular microfluid system with an integrated micromixer,” J. Micromech. Microeng., Vol. 6, pp. 99-102.
Sheng, J., Malkiel, E., and Katz, J., 2006, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt., Vol. 45, pp. 3895–3901.
Shih, T. R., and Chung, C. K., 2008, “A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range,” Microfluid. Nanofluid., Vol. 5, pp. 175-183.
Shin, S. M., Kang, I. S., and Cho, Y. K., 2005, “Mixing enhancement by using electrokinetic instability under time-periodic electric field,” J. Micromech. Microeng., Vol. 15, pp. 455-462.
Song, H., Chen, D. L., and Ismagilov, R. V., 2006, “Reactions in droplets in microfluidic channels,” Angwe. Chem. Int. Ed., Vol. 45, pp. 7336-7356.
Spring, K. R., and Inoué, S., 1997, “Video microscopy: the fundamentals,” Plenum Press, New York.
Stoeber, B., Hu, C. M. J., Liepmann, D., and Muller, S. J., 2006, “Passive flow control in microdevices using thermally responsive polymer solutions,” Phys. Fluids, Vol. 18, 053103.
Stoeber, B., Liepmann, D., and Muller, S. J., 2007, “Strategy for active mixing in microdevices,” Phys. Rev. E, Vol. 75, 066314.
Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., 2002a, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651.
Stroock, A. D., Dertinger, S. K., Whitesides, G. M., and Ajdari, A., 2002b, “Patterning flows using grooved surfaces,” Anal. Chem., Vol. 74, pp. 5306-5312.
Subarsan, A. P., and Ugaz, V. M., 2006a, “Fluid mixing in planar spiral microchannel,” Lab Chip, Vol. 6, pp. 74-82.
Subarsan, A. P., and Ugaz, V. M., 2006b, “Multivortex micromixing,” Proc. Natl. Acad. Sci. U. S. A., Vol. 103, pp. 7228-7233.
Suga, S., Nagaki, A., and Yoshida, J., 2003, “Highly selective Friedel-Crafts monoalkylation using micromixing,” Chem. Commun. pp. 354-355.
Sugii, Y., Nishio, S., and Okamoto, K., 2002, “In vivo PIV measurements of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas., Vol. 23, pp. 403–416.
Suzuki, H., Ho, C. M., and Kasagi, N, 2004, “A chaotic mixer for magnetic bead-based micro cell sorter,” J. Microelectromech. Syst., Vol. 13, pp. 779-790.
Tan, C. K. L., Tracey, M. C., Davis, J. B., and Johnston, I. D., 2005, “Continuously variable mixing-ratio micromixer with elastomer valves,” J. Micromech. Microeng., Vol. 15, pp. 1885–1893.
Tice, J. D., Song, H., Lyon, A. D., and Ismaglov, R. F., 2003, “Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the Capillary numbers,” Langmuir, Vol. 19, pp. 9127-9133.
Tofteberg, T., Skolimowski, M., Andreassen, E., and Geschke, O., 2009, “A novel passive micromixer: lamination in a planar channel system,” Microfluid. Nanofluid., DOI 10.1007/s10404-009-0456-z.
Tsai, J. H., and Lin, L., 2002, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,” Sens. Actuator A-Phys., Vol. 97-98, pp. 665-671.
Tseng, W. K., Lin, J. L., Sung, W. C., Chen, S. H., and Lee, G. B., 2006, “Active micro-mixers using surface acoustic waves on Y-cut 128◦ LiNbO3,” J. Micromech. Microeng., Vol. 16, pp. 539–548.
Tung, K. Y., Li, C. C., and Yang, J. T., 2009, “Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer,” Microfluid. Nanofluid., DOI 10.1007/s10404-009-0415-8.
Tung, K. Y., and Yang, J. T., 2008, “Analysis of a chaotic micromixer by novel methods of particle tracking and FRET,” Microfluid. Nanofluid., Vol. 5, pp. 749-759.
Varady, M. J., McLeod, L., Meacham, J. M., Degertekin, F. L., and Fedorov, A. G., 2007, “An integrated MEMS infrastructure for fuel processing- hydrogen generation and separation for portable power generation,” J. Micromech. Microeng., Vol. 17, pp. S257–S264.
Verma, M. K. S., Ganneboyina, S. R., RakshithR, R., and Ghatak, A., 2008, “Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids,” Langmuir, Vol. 24, pp. 2248-2251.
Wang, H., and Li, W., 2007, “A novel 3D porous micromixer fabricated using selective ultrasonic foaming,” J. Micromech. Microeng., Vol. 17, pp. 1835–1842.
Wang, L., and Yang, J. T., 2006, “An overlapping crisscross micromixer using chaotic mixing principles,” J. Micromech. Microeng., Vol. 16, pp. 2684–2691.
Wang, L., Yang, J. T., and Lyu, P. C., 2007, “An overlapping crisscross micromixer” Chem. Eng. Sci., Vol. 62, pp. 711–720.
Wang, Y., Zhe, J., Chung, B. T. F., and Dutta, P., 2008, “A rapid magnetic particle driven micromixer,” Microfluid. Nanofluid., Vol. 4, pp. 375-389.
Watts, P., and Haswell, S. J., 2005, “The application of micro reactors for organic synthesis,” Chem. Soc. Rev., Vol. 34, pp. 235-246.
West, J., Karamata, B., Lillis, B., Gleeson, J. P., Alderman, J., Collins, J. K., Lane, W., Mathewsona, A., and Berneya, H., 2002, “Application of magnetohydrodynamic actuation to continuous flow chemistry,” Lab Chip, Vol. 2, pp. 224-230.
Wu, H. Y., and Liu, C. H., 2005, “A novel electrokinetic micromixer,” Sens. Actuator A-Phys., Vol.118, pp. 107-115.
Wu, Z., and Nguyen, N. T., 2005, “Rapid mixing using two-phase hydraulic focusing in microchannels,” Biomed. Microdevices, Vol. 7, pp. 13-20.
Xi, C., Marks, D. L., Parikh, D. S., Raskin, L., and Boppart, S. A., 2004, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U. S. A., Vol. 101, pp. 7516-7521.
Xia, H. M., Shu, C., Wan, S. Y. M., and Chew, Y. T., 2006, “Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques,” J. Micromech. Microeng., Vol. 16, pp. 53-61.
Xia, H. M., Wan, S. Y. M., Shu, C., and Chew, Y. T., 2005, “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab Chip, Vol. 5, pp. 748-755.
Xia, Z., Cattafesta, L., and Fan, Z. H., 2007, “Deconvolution microscopy for flow visualization in microchannels,” Anal. Chem. Vol. 79, pp. 2576-2582.
Yamaguchi, Y., Takagi, F., Yamashita, K., Nakamura, H., Maeda, H., Sotowa, K., Kusakabe, K., Yamasaki, Y., and Morooka, S., 2004a, “3-D Simulation and Visualization of Laminar Flow in a Microchannel with Hair-Pin Curves,” AIChE J., Vol. 50, No. 7, pp. 1530-1535.
Yamaguchi, Y., Takagi, F., Watari, T., Yamashita, K., Nakamura, H., Shimizu, H., Maeda, H., 2004b, “Interface configuration of the two layered laminar flow in a curved microchannel,” Chem. Eng. J., Vol. 101, pp. 367-372.
Yang, J. T., and Lin, K. W., 2006, “Mixing and separation of two-phase flow in a micro planar serpentine channel,” J. Micromech. Microeng., Vol. 16, pp. 2439-2448.
Yang, J. T., Chen, C., Hu, I. C., and Lyu, P. C., 2007a, “Design of a self-flapping microfluidic oscillator and diagnosis with fluorescence methods,” J. Microelectromech. Syst., Vol. 16, pp. 826-835.
Yang, J. T., Huang, K. J., and Lin, Y. C., 2005, “Geometric Effects on Fluid Mixing in Passive Grooved Micromixers,” Lab Chip, Vol. 5, pp. 1140-1147.
Yang, J. T., Huang, K. J., Tung, K. Y., Hu, I. C., and Lyu, P. C., 2007b, “A chaotic micromixer modulated by constructive vortices agitation,” J. Micromech. Microeng., Vol. 17, pp. 2084-2092.
Yang, R., Williams, J. D., and Wang, W., 2004, “A rapid micro-mixer / reactor based on arrays of spatially impinging micro-jets,” J. Micromech. Microeng., Vol. 14, pp. 1345-1351.
Yang, S. Y., Lin, J. L., and Lee, G. B., 2009, “A vortex-type micromixer utilizing pneumatically driven membranes,” J. Micromech. Microeng., Vol. 19, 035020.
Yang, Z., Goto, H., Matsumoto, M., and Maeda, R., 2000, “Active micromixer for microfluidic systems using lead-zirconate-titanate (PZT)-generated ultrasonic vibration,” Electrophoresis, Vol. 21, pp. 116-119.
Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M., and Maeda, R., 2001, “Ultrasonic micromixer for microfluidic systems,” Sens. Actuator A-Phys., Vol. 93, pp. 266–272.
Yaralioglu, G. G., Wygant, I. O., Marentis, T. C., and Khuri-Yakub, B. T., 2004, “Ultrasonic mixing in microfluidic channels using integrated transducers,” Anal. Chem., Vol. 76, pp. 3694-3698.
Yoon, S. Y., and Kim, K. C., 2006, “3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept,” Meas. Sci. Technol., Vol. 17, pp. 2897–2905.
Yu, C. H., Yoon, J. H., and Kim, H. B., 2009, “Development and validation of stereoscopic micro-PTV using match probability,” J. Mech. Sci. Technol., Vol. 23, pp. 845-855.
Yu, H., Kwon, J. W., and Kim, E. S., 2006, “Microfluidic Mixer and Transporter Based on PZT Self-Focusing Acoustic Transducers,” J. Microelectromech. Syst., Vol. 15, pp. 1015-1024.
Zhu, X., and Kim, E. S., 1998, “Microfluidic motion generation with acoustic waves,” Sens. Actuator A-Phys., Vol. 66, pp. 355–360.