研究生: |
張瑋賢 |
---|---|
論文名稱: |
以La0.58Sr0.4 CoO3為電觸媒之陰極材料在氮氣環境中行氮氧化物分解之研究 Study of La0.58Sr0.4 CoO3 as cathode material of electrocatalyst on decomposition of nitric oxide in N2 environment |
指導教授: | 黃大仁 |
口試委員: |
呂世源
段興宇 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 鈣鈦礦結構 、電觸媒 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
交通運輸是形成氮氧化物的主要汙染來源,其中富氧燃燒引擎(lean-burn engines)雖可提高燃料的使用效率,但卻提高了氮氧化物的排放,傳統三相觸媒無法解決,勢必要發展更有效的氮氧化物處理技術。本研究分別使用的鈣鈦礦結構為La0.57Sr0.38Ag0.05Co0.95Cu0.05O3-δ(LSACC)和La0.58Sr0.4CoO3-δ(LSC),作為電觸媒管(electrocatalytic tube)和陽極支撐型鈕扣電池(anode electrolyte bilayer button cell)的陰極材料。
本研究前面主要是測試LSACC電觸媒管材料處理氮氧化物的基本測試,觀察氮氧化物分解處理的情形。為了更加貼近真實的模擬廢氣,將系統中的氦氣換成氮氣,卻發現氮氣系統下的氮氧化物轉化率降低很多,推測為材料中添加的Cu對於N2產生強吸附,會阻礙被吸附氮氧化物中氮物種的表面擴散結合成N2離開。基於上述的原因,改以A site有缺陷的La0.58Sr0.4Co為電觸媒管陰極材料,由於文獻提到A site有缺陷的鈣鈦礦結構會增加氧空缺,想要觀察La0.58Sr0.4Co材料是否有此特性以及在氮氣系統是否可行。後來進行La0.58Sr0.4Co的觸媒測試,發現其轉化率與電觸媒管下的轉化率沒有相差太多,推測應為管型電觸媒的頂端呈圓弧型,受到流體力學的影響使陰極模擬廢氣無法與陰極觸媒反應完全。由於上述原因,改以La0.58Sr0.4Co為陽極支撐型鈕扣電池陰極材料。
1. Roy, S., M.S. Hegde, and G. Madras, Catalysis for NOx abatement. Applied Energy, 2009. 86(11): p. 2283-2297.
2. Kašpar, J., P. Fornasiero, and N. Hickey, Automotive catalytic converters: current status and some perspectives. Catalysis Today, 2003. 77(4): p. 419-449.
3. Haile, S.M., Fuel cell materials and components. Acta Materialia, 2003. 51(19): p. 5981-6000.
4. Huang, T.-J., et al., Complete emissions control for highly fuel-efficient automobiles via a simulated stack of electrochemical-catalytic cells. Energy & Environmental Science, 2011. 4(10): p. 4061-4067.
5. 林育賢,以固態氧化物燃料電池去除氮氧化物之電化學提升研究,國立清華大學化工所 碩士論文,民國一百年。
6. Huang, T.-J. and I.C. Hsiao, Nitric oxide removal from simulated lean-burn engine exhaust using a solid oxide fuel cell with V-added (LaSr)MnO3 cathode. Chemical Engineering Journal, 2010. 165(1): p. 234-239.
7. Huang, T.-J. and C.-L. Chou, Effect of voltage and temperature on NO removal with power generation in SOFC with V2O5-added LSCF-GDC cathode. Chemical Engineering Journal, 2010. 160(1): p. 79-84.
8. Huang, T.-J., C.-Y. Wu, and Y.-H. Lin, Electrochemical Enhancement of Nitric Oxide Removal from Simulated Lean-Burn Engine Exhaust via Solid Oxide Fuel Cells. Environmental Science & Technology, 2011. 45(13): p. 5683-5688.
9. Huang, T.-J., S.-H. Hsu, and C.-Y. Wu, Simultaneous NOx and Hydrocarbon Emissions Control for Lean-Burn Engines Using Low-Temperature Solid Oxide Fuel Cell at Open Circuit. Environmental Science & Technology, 2012. 46(4): p. 2324-2329.
10. Buergler, B.E., A.N. Grundy, and L.J. Gauckler, Thermodynamic Equilibrium of Single-Chamber SOFC Relevant Methane–Air Mixtures. Journal of The Electrochemical Society, 2006. 153(7): p. A1378-A1385.
11. Molenda, J., K. Świerczek, and W. Zając, Functional materials for the IT-SOFC. Journal of Power Sources, 2007. 173(2): p. 657-670.
12. fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004. 127(1–2): p. 273-283.Weber, A. and E. Ivers-Tiffée, Materials and concepts for solid oxide
13. John B. Goodenough, Ceramic technology - Oxide-ion conductors by design, Nature , 2000. 404: p. 821-823.
14. Mizusaki, J., et al., Preparation of nickel pattern electrodes on YSZ and their electrochemical properties in H2-H2O atmospheres. Journal of the Electrochemical Society, 1994. 141(8): p. 2129-2134.
15. 周建良,以La0.58Sr0.4Co0.2Fe0.8O3-δ為固態氧化物燃料電池陰極材料之研究,國立清華大學化工所 博士論文,民國九十八年。
16. Zhu, J. and A. Thomas, Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B: Environmental, 2009. 92(3–4): p. 225-233.
17. Chunwen Sun, Rob Hui, Justin Roller, Cathode materials for solid oxide fuel cells: a review, Journal of Solid State Electrochemistry , 2010.14(7): p.1125-1144.
18. Tietz, F., et al., Performance of LSCF cathodes in cell tests. Journal of Power Sources, 2006. 156(1): p. 20-22.
19. Kim, S., et al., Oxygen permeation, electrical conductivity and stability of the perovskite oxide La0.2Sr0.8Cu0.4Co0.6O3−x. Solid State Ionics, 1997. 104(1–2): p. 57-65.
20. Duncan, K.L., K.-T. Lee, and E.D. Wachsman, Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes. Journal of Power Sources, 2011. 196(5): p. 2445-2451.
21. Huang, T.-J., et al., NOx emission control for automotive lean-burn engines by electro-catalytic honeycomb cells. Chemical Engineering Journal, 2012. 203(0): p. 193-200.
22. Lin, B., et al., Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3−δ perovskite cathode and functional graded anode. Journal of Power Sources, 2010. 195(6): p. 1624-1629.
23. Huang, T.-J., C.-Y. Wu, and C.-C. Wu, Lean-burn NOx emission control via simulated stack of solid oxide fuel cells with Cu-added (LaSr)MnO3 cathodes. Chemical Engineering Journal, 2011. 172(2–3): p. 665-670.
24. Huang, T.-J. and C.-L. Chou, Effect of O2 concentration on performance of solid oxide fuel cells with V2O5 or Cu added (LaSr)(CoFe)O3–(Ce,Gd)O2−x cathode with and without NO. Journal of Power Sources, 2009. 193(2): p. 580-584.
25. Brosda, S., C.G. Vayenas, and J. Wei, Rules of chemical promotion. Applied Catalysis B: Environmental, 2006. 68(3–4): p. 109-124.
26. Murray, E.P., T. Tsai, and S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature, 1999. 400(6745): p. 649-651.
27. Kim, H., et al., Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells. Journal of The Electrochemical Society, 2002. 149(3): p. A247-A250.
28. Liu, B.S. and C.T. Au, Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas. Applied Catalysis A: General, 2003. 244(1): p. 181-195.
29. Puengjinda, P., et al., Influence of Preparation Methods on the Carbon Deposition and Reduction Behavior of Ni–ScSZ Cermet. Journal of The Electrochemical Society, 2010. 157(11): p. B1673-B1678.
30. Zhu, J., et al., Study of La2−xSrxCuO4 catalysts for NO+CO reaction from the measurements of O2-TPD, H2-TPR and cyclic voltammetry. Journal of Molecular Catalysis A: Chemical, 2005. 238(1–2): p. 35-40.
31. Zhu, J. and A. Thomas, Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B: Environmental, 2009. 92(3–4): p. 225-233.
32. Prasad, D.H., et al., Synthesis of nano-crystalline La1–xSrxCoO3–δ perovskite oxides by EDTA–citrate complexing process and its catalytic activity for soot oxidation. Applied Catalysis A: General, (0).
33. Teraoka, Y., T. Harada, and S. Kagawa, Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. Journal of the Chemical Society, Faraday Transactions, 1998. 94(13): p. 1887-1891.
34. Huang, T.-J., C.-Y. Wu, and D.-Y. Chiang, Effect of H2O and CO2 on NOx emission control for lean-burn engines by electrochemical-catalytic cells. Journal of Industrial and Engineering Chemistry, 2013. 19(3): p. 1024-1030.