研究生: |
賴至人 Lai, Chih Jen |
---|---|
論文名稱: |
肝臟X受體激活物T0901317抑制人類臍靜脈內皮細胞血管新生之研究 The Study of Liver X Receptor Agonist T0901317 Suppresses Angiogenesis of HUVEC Cells |
指導教授: |
褚志斌
Chuu, Chih Pin 汪宏達 Wang, Horng Dar |
口試委員: |
陳雅雯
Chen, Ya Wen 張中和 Chang, Chung Ho 褚志斌 Chuu, Chih Pin 汪宏達 Wang, Horng Dar |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 血管新生 |
外文關鍵詞: | Angiogenesis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LXR對於膽固醇、脂質的合成以及醣類的代謝等體內平衡作用都扮演著相當重要的調控角色, 因此LXR在心血管疾病的治療上是個十分有潛力的標的。LXR是一種核受體,有兩種isoform,分別是LXR 和 LXR ,可由激活物活化,與RXR形成dimer之後結合在DNA上藉此調控下游的基因表現。我們由之前的實驗結果以及文獻得知LXR的激活物可以有效抑制攝護腺腫細胞的生長乃至於減緩攝護腺癌細胞的轉移進程。我們實驗發現在HUVEC細胞中加入LXR的激活物T0901317能有效抑制血管新生的生長。在HUVEC 細胞migration實驗和雞胚胎囊膜實驗中也看到加了LXR激活物T0901317能夠明顯降低HUVEC細胞的移動能力以及雞蛋胚胎血管的生長。我們從LXR的標的基因篩選出幾個有可能的基因,發現T0901317可能是藉由Apolipoprotein D這條路徑來調控血管新生的情況。透過angiogenesis protein array,我們也發現到LXR的激活物T0901317對於一些血管新生的蛋白以及發炎反應的蛋白都有相當程度的調控作用,而血管新生與發炎反應更與癌細胞發展和腫瘤生長息息相關。我們正嘗試著去找出更全面、更完整的訊號調控路徑,以建立更完整的LXR調控血管新生的網絡及資訊。
Liver X receptors (LXRs) are important sensors and regulators for cholesterol, fatty acid, and glucose and play essential roles in the development and progression of cardiovascular diseases. Liver X receptors (LXRs) belong to the nuclear superfamily and contain two isoforms: LXR and LXR. LXR dimerizes with RXR in response to the stimulation of either one's agonists. We previously reported that treatment with LXR agonists suppresses the tumor growth and the disease progression of prostate cancer. In this study, we examined if treatment with T0901317, the most potent LXR agonist, may suppress angiogenesis. The results of tube formation assay indicated that treatment with T0901317 inhibited the tube formation of HUVEC cells. T0901317 treatment suppressed migration of HUVEC cells as determined by migration assay and inhibited angiogenesis in chorioallantoic membranes assay in vivo. Angiogenesis protein array revealed that T0901317 treatment suppresses inflammation response. Our results suggested that activation of LXR may interfere angiogenesis via induction of inflammation-related proteins and LXR target genes as well as decrease of angiogenesis regulatory proteins. We discovered that Apolipoprotein D (ApoD) may be a potential target for tumor angiogenesis inhibition. Based on our findings, we believe that administration of LXR agonist T0901317 may be a potential treatment for cancer agiogenesis.
1. Chuu CP, Kokontis JM, Hiipakka RA, Liao S. Modulation of liver X receptor signaling as novel therapy for prostate cancer. J Biomed Sci. 2007;14(5):543-53.
2. Seol W, Choi HS, Moore DD. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Molecular endocrinology. 1995;9(1):72-85.
3. Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. The Journal of clinical investigation. 2006;116(3):607-14.
4. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383(6602):728-31.
5. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 1995;9(9):1033-45.
6. Song C, Kokontis JM, Hiipakka RA, Liao S. Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Natl Acad Sci U S A. 1994;91(23):10809-13.
7. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, et al. Role of LXRs in control of lipogenesis. Genes Dev. 2000;14(22):2831-8.
8. Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB, et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem. 2002;45(10):1963-6.
9. Edwards PA, Kennedy MA, Mak PA. LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul Pharmacol. 2002;38(4):249-56.
10. Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, Rudling M, et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest. 2001;107(5):565-73.
11. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998;93(5):693-704.
12. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 2002;99(11):7604-9.
13. Blaschke F, Leppanen O, Takata Y, Caglayan E, Liu J, Fishbein MC, et al. Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries. Circ Res. 2004;95(12):e110-23.
14. Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A. 2001;98(2):507-12.
15. Efanov AM, Sewing S, Bokvist K, Gromada J. Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes. 2004;53 Suppl 3:S75-8.
16. Cao G, Liang Y, Broderick CL, Oldham BA, Beyer TP, Schmidt RJ, et al. Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem. 2003;278(2):1131-6.
17. Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, Gustafsson JA. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci U S A. 2002;99(21):13878-83.
18. Andersson S, Gustafsson N, Warner M, Gustafsson JA. Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci U S A. 2005;102(10):3857-62.
19. Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, et al. The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer's disease. J Biol Chem. 2005;280(6):4079-88.
20. Chuu CP, Hiipakka RA, Kokontis JM, Fukuchi J, Chen RY, Liao S. Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res. 2006;66(13):6482-6.
21. Chuu CP, Lin HP. Antiproliferative effect of LXR agonists T0901317 and 22(R)-hydroxycholesterol on multiple human cancer cell lines. Anticancer Res. 2010;30(9):3643-8.
22. Fukuchi J, Hiipakka RA, Kokontis JM, Hsu S, Ko AL, Fitzgerald ML, et al. Androgenic suppression of ATP-binding cassette transporter A1 expression in LNCaP human prostate cancer cells. Cancer Res. 2004;64(21):7682-5.
23. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, et al. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307(1):C25-38.
24. Noghero A, Perino A, Seano G, Saglio E, Lo Sasso G, Veglio F, et al. Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2. Arterioscler Thromb Vasc Biol. 2012;32(9):2280-8.
25. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature medicine. 2000;6(4):389-95.
26. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353-64.
27. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England journal of medicine. 1986;315(26):1650-9.
28. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. The Journal of clinical investigation. 1999;103(2):159-65.
29. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American journal of pathology. 2002;160(3):985-1000.
30. Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. The American journal of pathology. 2000;156(2):361-81.
31. McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant? The American journal of pathology. 2000;156(2):383-8.
32. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature medicine. 2001;7(11):1194-201.
33. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nature reviews Cancer. 2003;3(6):401-10.
34. Rafii S, Heissig B, Hattori K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene therapy. 2002;9(10):631-41.
35. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. The Journal of experimental medicine. 2001;193(9):1005-14.
36. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nature medicine. 2002;8(8):841-9.
37. Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan-Ling T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1995;15(7 Pt 1):4738-47.
38. Hirschi KK, D'Amore PA. Pericytes in the microvasculature. Cardiovascular research. 1996;32(4):687-98.
39. Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998;125(9):1591-8.
40. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(16):8761-6.
41. Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. The New England journal of medicine. 1993;328(17):1237-43.
42. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nature reviews Cancer. 2002;2(10):727-39.
43. O'Reilly MS. Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. Exs. 1997;79:273-94.
44. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277-85.
45. Joseph IB, Vukanovic J, Isaacs JT. Antiangiogenic treatment with linomide as chemoprevention for prostate, seminal vesicle, and breast carcinogenesis in rodents. Cancer research. 1996;56(15):3404-8.
46. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends in pharmacological sciences. 2003;24(2):96-102.
47. Iniguez MA, Rodriguez A, Volpert OV, Fresno M, Redondo JM. Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends in molecular medicine. 2003;9(2):73-8.
48. Lieberman R. Chemoprevention of prostate cancer: current status and future directions. Cancer metastasis reviews. 2002;21(3-4):297-309.
49. Hussain T, Gupta S, Mukhtar H. Cyclooxygenase-2 and prostate carcinogenesis. Cancer letters. 2003;191(2):125-35.
50. Chen YJ, Wang LS, Wang PH, Lai CR, Yen MS, Ng HT, et al. High cyclooxygenase-2 expression in cervical adenocarcinomas. Gynecologic oncology. 2003;88(3):379-85.
51. Todd AS. The histological localisation of fibrinolysin activator. The Journal of pathology and bacteriology. 1959;78:281-3.
52. Spaet TH, Erichson RB. The vascular wall in the pathogenesis of thrombosis. Thrombosis et diathesis haemorrhagica Supplementum. 1966;21:67-86.
53. Baumgartner HR, Tranzer JP, Studer A. An electron microscopic study of platelet thrombus formation in the rabbit with particular regard to 5-hydroxytryptamine release. Thrombosis et diathesis haemorrhagica. 1967;18(3-4):592-604.
54. Tranzer JP, Baumgartner HR. Filling gaps in the vascular endothelium with blood platelets. Nature. 1967;216(5120):1126-8.
55. Warren BA, de Bono AH. The ultrastructure of initial stages of platelet aggregation and adhesion to damaged vessel walls in vivo. British journal of experimental pathology. 1970;51(4):415-22.
56. Zeldis SM, Nemerson Y, Pitlick FA, Lentz TL. Tissue factor (thromboplastin): localization to plasma membranes by peroxidase-conjugated antibodies. Science. 1972;175(4023):766-8.
57. Stemerman MB, Spaet TH. The subendothelium and thrombogenesis. Bulletin of the New York Academy of Medicine. 1972;48(2):289-301.
58. Becker CG, Nachman RL. Contractile proteins of endothelial cells, platelets and smooth muscle. The American journal of pathology. 1973;71(1):1-22.
59. Gore I, Takada M, Austin J. Ultrastructural basis of experimental thrombocytopenic purpura. Archives of pathology. 1970;90(3):197-205.
60. Roy AJ, Djerassi I. Effects of platelet transfusions: plug formation and maintenance of vascular integrity. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine. 1972;139(1):137-42.
61. Strum JM, Junod AF. Radioautographic demonstration of 5-hydroxytryptamine- 3 H uptake by pulmonary endothelial cells. The Journal of cell biology. 1972;54(3):456-67.
62. Park HJ, Zhang Y, Georgescu SP, Johnson KL, Kong D, Galper JB. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem cell reviews. 2006;2(2):93-102.
63. Majewski S, Szmurlo A, Marczak M, Jablonska S, Bollag W. Inhibition of tumor cell-induced angiogenesis by retinoids, 1,25-dihydroxyvitamin D3 and their combination. Cancer Lett. 1993;75(1):35-9.
64. Drayna DT, McLean JW, Wion KL, Trent JM, Drabkin HA, Lawn RM. Human apolipoprotein D gene: gene sequence, chromosome localization, and homology to the alpha 2u-globulin superfamily. DNA. 1987;6(3):199-204.
65. Braesch-Andersen S, Beckman L, Paulie S, Kumagai-Braesch M. ApoD mediates binding of HDL to LDL and to growing T24 carcinoma. PloS one. 2014;9(12):e115180.
66. Appari M, Werner R, Wunsch L, Cario G, Demeter J, Hiort O, et al. Apolipoprotein D (APOD) is a putative biomarker of androgen receptor function in androgen insensitivity syndrome. Journal of molecular medicine. 2009;87(6):623-32.
67. Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD. Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation. 1999;100(13):1423-31.
68. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27-31.
69. Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 2000;19(49):5598-605.
70. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. The Journal of biological chemistry. 1999;274(31):21491-4.