簡易檢索 / 詳目顯示

研究生: 陳家承
Chen, Chia-Cheng
論文名稱: 低電容背對背二極體式暫態電壓抑制器之設計
Low-capacitance Back-to-back Diode Transient Voltage Suppressor
指導教授: 林崇榮
Lin, Chrong-Jung
金雅琴
King, Ya-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 66
中文關鍵詞: 暫態電壓抑制器背對背二極體
外文關鍵詞: Transient Voltage Suppressor, back-to-back diode
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 暫態電壓抑制器(TVS)主要應用在防護過度電壓應力(EOS)與靜電放電(ESD)對積體電路的破壞。針對先進VLSI電路的保護,其主要發展趨勢在尋求低電壓與低電容的TVS元件,達成有效的保護及符合資料傳輸的需求。本論文提出橫向連結之背對背二極體的結構,達到TVS元件低電容與低崩潰電壓的需求,可整合於先進積體電路或應用於獨立的TVS元件中。根據電容、直流I-V及暫態TLP I-V特性量測結果,此側向背對背二極體的確可以符合低電容低電壓暫態電壓抑器的應用。同時在此研究中,我們藉由TLP測試後的元件,運用紅外線阻值偵測儀(IR-OBIRCH)及微光顯微鏡(EMMI)等分析技術,可以清楚的了解元件損壞區域位置,可幫助崩潰機制的分析極進行元件結構之最佳化設計。


    One of the developmental trends for Transient Voltage Suppressor (TVS), the off-chip electrical-overstress (EOS) and electrostatic discharge (ESD) protection device, is to seek low-voltage and low capacitance solution for advance integrated circuit applications. In this paper, on the back-to-back diode-based TVS is proposed to provide both low capacitance and low breakdown voltage, which can be integrated with advance IC process or further optimized for discrete TVS device. The capacitance level, TLP I-V characteristic, DC I-V characteristic are investigated in this work, where it is shown that the proposed device can be promising candidate for low capacitance TVS applications. After the TLP test, the broken TVS diodes are inspected by IR-OBIRCH and EMMI for the identification of failure points. These data not only help further understanding of the breakdown mechanism in these lateral back-to-back diodes, but also provide guidelines for device structure optimization.

    摘要 i Abstract ii 誌謝 iii 內文目錄 iv 附圖目錄 vi 表格目錄 ix 第一章 緒論 1 1.1 研究動機 1 1.2 章節介紹 1 第二章 暫態電壓抑制器之介紹與技術回顧 2 2.1 暫態電壓抑制器的主要應用 2 2.1.1 暫態電壓抑制器的防護原理 2 2.1.2 暫態電壓抑制器的相關參數 3 2.2 傳統暫態電壓防護元件的種類與回顧 4 2.2.1 壓敏電阻(Varistor) 4 2.2.2 氣體放電管(Gas Discharge Tube) 5 2.2.3 逆偏二極體(Reverse-bias Diode) 6 2.2.4 擊穿二極體(Punch-through Diode) 7 2.3 現今背對背式二極體元件的應用 7 2.4 總結 7 第三章 低電容背對背二極體式暫態電壓抑制器之設計與操作原理17 3.1 低電容背對背二極體元件結構與基本操作原理 17 3.1.1 背對背二極體之基本結構 17 3.1.2 背對背二極體之操作原理 18 3.2 背對背二極體崩潰機制之探討 19 3.2.1 崩潰機制的介紹 20 3.2.2 背對背二極體崩潰機制之討論 21 3.3 元件佈局設計之討論 21 3.4 總結 22 第四章 元件量測結果與討論 37 4.1 直流電性量測結果 37 4.1.1 不同淺溝槽隔離(STI)寬度之直流電性探討 37 4.1.2 有無Deep N-Well之直流電性探討 37 4.1.3 元件面積與佈局設計之直流量測結果探討 38 4.1.4 元件電容量測結果 39 4.2 暫態電性量測結果 40 4.2.1 傳輸線觸波系統(TLP System)之原理 40 4.2.2 元件TLP量測結果之探討 41 4.3 TLP測試後元件故障點分析 42 4.3.1 紅外線-阻值變化偵測儀(IR-OBIRCH) 42 4.3.2 微光顯微鏡(EMMI) 43 4.4 元件最佳化設計與討論 43 4.5 總結 45 第五章 結論 64 參考文獻 65

    [1] V. V. N. Obreja, “Capabilities and limitations of semiconductor surge voltage suppressor,” in Proc. Int. Semicond. Conf. CAS, 1999, pp. 169–172.
    [2] Y. King, B. Yu, J. Pohlman and C. Hu “Punchthrough diode as the transient voltage suppressor for low-voltage electronic,” Electrical Overstress/Electrostatic Discharge Symposium, 1995, pp. 27-33.
    [3] William D. Niebuhr, “MOV Surge Arresters: Improved Substation Equipment Protection,’’ IEEE Trans. Ind. Appl., vol. 1A-22, No. 4, July/August 1985.
    [4] Stephen P. Cowman, “Varistor structures,’’ US Patent # 5,115,221, May 22, 1992.
    [5] Y. Sato, F. Oba, M. Yodogawa, T. Yamamoto, and Y. Ikuhara, ‘‘Grain Boundary Dependency of Nonlinear Current–Voltage Characteristics in Pr and Co Doped ZnO Bicrystals,’’ J. Appl. Phys., 95, 1258–64 (2004).
    [6] J. Lin, C. Kao, “Multilayer ZnO Varistor,’’ US Patent # 5,369,390, Nov 29, 1994.
    [7] W. D. Greason, Z. Kucerovsky, S. Bulach, and M. W. Flatley, “Investigation of the Optical and Electrical Characteristics of a Spark Gap,” IEEE Trans. on Industry Applications, Vol.33, No.6, Nov. Dec. 1997, pp.1519-1526.
    [8] EMP Engineering and Design Principle, Bell Lab. pp.99-108, 1975.
    [9] D. A. Neamen, Semiconductor Physics and Devices. Homewood, IL: Irwin, 1992, p. 225, p. 274, p. 387.
    [10] O. M. Clark and T. M. Dalsing, “Low Capacitance Silicon Transient Suppressor with Monolithic Structure,” U.S. Patent #5,245,412, Sep. 14, 1993.
    [11] Universal Serial Bus 2.0 Specifications, http://www.usb.org/
    [12] J. H. Lau, Flip Chip Technologies, New York: McGraw-Hill, 1995.
    [13] P. Garrou, “Wafer level chip scale package (WL-CSP): An overview,” IEEE Trans. Adv. Package., vol. 23, May. 2000, pp. 198–205.
    [14] Y. Taur , T. H. Ning: Fundamentals of Modern VLSI Devices, Cambridge Univ. Press, Cambridge, U.K, 1998, p. 342-344.
    [15] S. M. Sze, Semiconductor Devices, Physics and Technology, Wiley. New York, 2001, p.117-124.
    [16] S. Mahadevan, S. M. Hardas and G. Suryan. “Electrical Breakdown in Semiconductors,” phys. stat. sol. (a) 8, 335 ,1971
    [17] T. J. Maloney and N. Khurana, “Transmission line pulsing techniques for circuit modeling of ESD-phenomena,” in Proc. EOS/ESD-Symp., 1985, pp. 49–54.
    [18] K. Nikawa and S. Inoue, “New capability of OBIRCH method for fault localization and defect detection,” in Proc. ATS Akita, Japan, 1997, pp. 214-219..
    [19] C. Hawkins et al., “The Use of Light Emission in Failure Analysis of CMOS ICs,” Proc. Int’l Symp. Testing and Failure Analysis, Oct. 1993, pp. 55-67.
    [20] http://www.onsemi.cn/PowerSolutions/home.do
    [21] http://www.semtech.com/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE