簡易檢索 / 詳目顯示

研究生: 羅鈞肇
Lo, Chun-Chao
論文名稱: 薄膜揉皺的分子動力學模擬
Membrane Crumpling with Molecular Dynamics Simulation
指導教授: 洪在明
Hong, Tzay-Ming
口試委員: 洪在明
Hong, Tzay-Ming
蕭百沂
Hsiao, Pai-Yi
陳培亮
Chen, Peilong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 39
中文關鍵詞: 揉皺薄膜分子動力學模擬
外文關鍵詞: Crumpling, Membrane, Molecular Dynamics Simulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我研究的是薄膜揉皺的分子動力學模擬。揉皺力學是個新的物理領域,我有興趣的部分在模擬薄膜裝進一個球型的球殼,並施以均勻壓力,觀察薄膜的力學反應和統計行為。我們用的模型是三角晶格,在晶格點擺上粒子,形成一張二維的薄膜。

    有外國研究團隊做電腦模擬發現如果對薄膜球施以均勻的外力,外力與半徑會形成簡單的冪次關係~(Power law)~,而且冪次與薄膜的材質、厚度與大小都沒有關係。先前學長已經用實驗證實半徑與外力的確會形成冪次關係,但是冪次會與材質有關,所以我們希望用電腦模擬確認他的實驗結果。

    模擬容許我們研究許多實驗中難以量到的物理量,例如摺痕能量的分布以及內部結構,也可以觀看紙球揉皺的過程,內部結構如何變化,從中了解紙球是如何在內部形成支柱來抵抗外力。我們也有模擬混合揉皺,並與實驗結果對照。

    為了分析摺痕的長度與能量分布,我寫了一個連線的程式,能夠輕易地使用滑鼠連出摺痕所在,並分析長度的分布,排除之前的研究使用水淹法不準的問題,而且能夠得知摺痕能量的分布,從結果中我們發現,在紙球揉皺過程的摺痕能量幾乎是與長度成正比,而不是與前人所預測的長度的1/3成正比。

    我們也發現摺痕長度的平均值會與密度倒數成正比,並提出模型和理論來解釋這個結果。


    In this thesis, we use molecular dynamics (MD) simulation to study crumpled membranes. Although it exists in our everyday life,
    there are still many mysteries in the properties related to crumpling
    that are starting to be unraveled in recent years. We use MD to study the
    mechanical properties of
    a thin sheet being crumpled under an ambient pressure. The way we
    proceed is to confine the fictitious sheet
    by a spherical shell under an external pushing force. In
    our MD, we use a triangular lattice model in which particles
    are simulated by lattice points and form a two-dimensional membrane.

    Two previous Nature-Material papers have confirmed a scaling law between the
    radius and external force
    and concluded that the power of the relation was universal - independent of
    materials, thickness and size of the sheet. Through real experiments, our
    group have upheld the scaling law, except that we found the exponent to vary
    with different made of the sheet. Why did the previous renowned workers fail
    to find this? If they had made a mistake, is there any other conclusion of
    theirs that will be cast into doubt? To explain all these questions,
    we set out to redo the MD simulation ourselves.
    Simulations allow us to
    measure and observe many physical quantities that is hard or impossible to
    obtain in
    experiments. For example, we can know (1) how the ridges corroborate in
    their formation to resist against the external force, (2) the statistical
    distribution of ridge length, (3) how the stored energy varies with the
    ridge length, (4) all the questions above for the case when two sheets of
    different made are crumpled together (we have a lab mate, Ming-Han Chou, who
    is in charge
    doing this experiment so that we can compare our results). To obtain the above
    mentioned distributions, I wrote a program that enables me to build
    the net of ridges fast and easily. With the help of this program, the
    inaccuracy of the locations and lengths of ridges from
    Watershed Algorithm was minimized. In the end, we found the
    energy to be linearly proportional to the ridge length, instead of having a
    one-third power as Professor Witten claimed. Besides, the
    average ridge length is found to be proportional to the inverse of
    the density. We proposed a simple model which can satisfactorily explain all
    our findings.

    ch1 緒論 1 ch2 „„„薄膜揉皺理論 4 2.1 薄膜揉皺能量 . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 伸縮能量(Stretching Energy) . . . . . . . . . . . . 5 2.1.2 彎曲能量(Bending Energy) . . . . . . . . . . . . . 6 2.2 ridge能量與長度的冪次關係 . . . . . . . . . . . . . . . . . 6 2.3 ridge長度統計分布 . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Lognormal分布 . . . . . . . . . . . . . . . . . . . 7 2.3.2 Exponential分布 . . . . . . . . . . . . . . . . . . . 9 2.4 施力與半徑的關係 . . . . . . . . . . . . . . . . . . . . . . 11 ch3 分子動力學數值模擬模型與方法 14 3.1 分子動力學原理 . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 分子動力學模型 . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Lennard-Jones 12-6 Potential . . . . . . . . . . . . 16 3.2.2 彈性位能(Stretching Energy) . . . . . . . . . . . . 19 3.2.3 彎曲位能(Bending Energy) . . . . . . . . . . . . . 19 3.2.4 阻力與擾動 . . . . . . . . . . . . . . . . . . . . . . 20 3.2.5 外牆 . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 模擬設定 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 去因次化 . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2 參數 . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ch4 模擬結果分析與討論 25 4.1 ‘半徑與施力的冪次關係 . . . . . . . . . . . . . . . . . . . . 25 4.2 摺痕長度與能量分布 . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 單一摺痕 . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2 揉皺狀態的摺痕 . . . . . . . . . . . . . . . . . . . . 29 ch5 結論與未來展望 38

    [1] E. Sultan and A. Boudaoud, Phys. Rev. Lett. 96, 136103 (2006).
    [2] G. A. Vliegenthart and G. Gompper, Nat Mater 5, 216 (2006).
    [3] Y. C. Lin, Y. L. Wang, Y. Liu, and T. M. Hong, Phys. Rev. Lett.
    101, 125504 (2008).
    [4] Y.-C. Lin et al., Phys. Rev. Lett. 103, 263902 (2009).
    [5] A. Wood, Physica A 313, 83 (2002).
    [6] T. A. Witten, Rev. Mod. Phys. 79, 643 (2007).
    [7] D. L. Blair and A. Kudrolli, Phys. Rev. Lett. 94, 166107 (2005).
    [8] C. A. Andresen, A. Hansen, and J. Schmittbuhl, Phys. Rev. E
    76, 026108 (2007).
    [9] A. Lobkovsky, S. Gentges, H. Li, D. Morse, and T. A. Witten,
    Science 270, 1482 (1995).
    [10] T. Tallinen, J. A. Astrom, and J. Timonen, Nat Mater 8, 25
    (2009).
    [11] T. Tallinen, Numerical Studies on Membrane Crumpling, PhD
    thesis, University of Jyvaskyla, Finland, 2009.
    [12] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 2nd Ed.
    (Pergamon, Oxford, 1970).
    [13] W. Bai, Y.-C. Lin, T.-K. Hou, and T.-M. Hong, Phys. Rev. E 82,
    066112 (2010).
    [14] S.-F. Liou, Co-crumpling model and simulations for one-
    dimensional crumpled membranes, Master's thesis, National Ts-
    ing Hua University, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE