簡易檢索 / 詳目顯示

研究生: 陳采秀
Chen, Tsai Hsiu
論文名稱: 具多層次孔洞之MFI與CHA沸石材料的合成研究
Synthesis of Hierarchical MFI and CHA Zeolite Materials
指導教授: 楊家銘
Yang, Chia Min
口試委員: 洪嘉呈
Horng, Jia Cherng
林昇佃
Lin, Shawn D.
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 沸石多層次孔洞
外文關鍵詞: CHA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用兩端親水、中間疏水的兩性高分子與不同構形及親疏水端類型之分子,合成多層次孔洞MFI與CHA沸石,調控並觀察其對沸石結構、形貌與孔洞性質的影響。在合成具MFI結構silicalite-1沸石部分,我們嘗試混入陽離子界面活性劑、胺基高分子、三甲基苯等分子,發現帶正電的四級銨親水端或長丙氧基鏈疏水段對於多層次孔洞silicalite-1的合成及其形貌影響最為顯著。另一方面,我們設計不同親疏水端種類的兩性高分子,混合結構導向試劑三甲基金剛烷氫氧化銨 (TMAdaOH) 合成具CHA結構的SSZ-13沸石,並觀察到不同兩性高分子對引導沸石結構、形貌的顯著差別,例如共價鍵結二甲基化金剛烷胺與二溴丁烷所合成之親水端與結構間作用力較強,受短丙氧基鏈限制其自由度而干擾CHA結構形成,以及長丙氧基鏈疏水段會在沸石表面造成缺陷的現象。此外,我們嘗試調整TMAdaOH與兩性高分子間的比例,得到有少量中孔洞形成且表面帶有缺陷的球狀SSZ-13沸石顆粒。


    In this study, we aimed at design of tri-block polymers comprising propylene oxide chain connecting two ends of triquaternary ammonium groups, and used them and molecules with different types of amphiphilic groups for the synthesis of hierarchical zeolites in order to observe their influences on zeolite structure, morphology, and porosity. In the synthesis of hierarchical silicalite-1 with MFI structure, we added compunds including hexadecyl-trimethyl-ammonium bromide, poly(propylene glycol) bis(2-aminopropyl ether), or 1,3,5-trimethylbenzene and found that the surfactant with cationic quaternary ammonium groups or long propylene oxide chain strongly influenced the structure, crystallinity, and morphology of hierarchical silicalite-1. On the other hand, in the synthesis of SSZ-13 with CHA structure, we added tri-block polymers designed with different amphiphilic groups to synthesize hierarchical SSZ-13 with N,N,N-trimethyl-1-adamantammonium hydroxide (TMAdaOH) as structure-directing agent. We observed that the tri-block surfactants with different amphiphilic group induced the formation of zeolitic materials with diverse mophology and affected the zeolite crystallinity. We noted that 1-adamantyl-N+(CH3)2-C4H8Br hydrophilic group that interacts strongly with zeolite framework interfered the CHA structure formation when it is confined by short propylene oxide chain, and that tri-block polymers with long propylene oxide chain created defects on the surface of zeolite particles. Besides, we adjusted the ratio of TMAdaOH and tri-block polymers to synthesize spherical SSZ-13 particles with irregular surface defects and some mesoporosity.

    第1章 緒論 1 1-1 沸石 1 1-1-1 沸石簡介 1 1-1-2 沸石結構與分類 3 1-1-3 沸石的合成 7 1-2 中孔洞沸石材料合成 11 1-2-1 後合成法 12 1-2-2 模板法 15 1-3 研究動機 22 第2章 實驗部分 24 2-1 實驗藥品 24 2-2 結構導向試劑與兩性高分子之合成 26 2-2-1 四級銨分子合成 29 2-2-2 兩性高分子合成 31 2-2-3 三甲基化胺基高分子 32 2-2-4 TMAdaOH合成 33 2-3 沸石材料之製備 34 2-3-1 水熱合成silicalite-1 34 2-3-2 水熱合成SSZ-13 35 2-4 樣品命名 36 2-5 材料分析方法 38 2-5-1 X光粉末繞射(Powder X-Ray Diffraction, PXRD) 38 2-5-2 掃描式電子顯微術(Scanning Electron Microscopy, SEM) 39 2-5-3 熱重分析法(Thermo Gravimetric Analysis, TGA) 40 2-5-4 氮氣物理吸脫附法(N2 Physisorption) 40 2-5-5 核磁共振光譜(NMR Spectrometry) 45 2-5-6 固態核磁共振光譜(Solid-State NMR Spectrometry) 46 2-5-7 傅立葉紅外線轉換光譜(FTIR Spectrometry) 47 第3章 結果與討論 48 3-1 結構導向試劑及兩性高分子之合成與鑑定 48 3-1-1 兩性高分子的合成 48 3-1-2 三甲基化胺基高分子 55 3-1-3 TMAdaOH的合成 57 3-2 以N3PO6N3合成多層次孔洞silicalite-1 58 3-2-1 TEOS合成系統中混合界面活性劑或有機物之合成探討 63 3-2-2 矽酸鈉合成系統中混合界面活性劑或有機物之合成探討 76 3-3 混入兩性高分子合成多層次孔洞SSZ-13 85 3-3-1 混入不同兩性高分子種類之合成 87 3-3-2 調整TMAdaOH與兩性高分子比例之合成 96 第4章 結論 106 第5章 參考文獻 107

    [1] Sing, K. S. W., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). 1985; Vol. 57, p 603.
    [2] Chen, L.-H.; Li, X.-Y.; Rooke, J. C.; Zhang, Y.-H.; Yang, X.-Y.; Tang, Y.; Xiao, F.-S.; Su, B.-L., J. Mater. Chem. 2012, 22, 17381-17403.
    [3] Byrappa, K.; Yoshimura, M., Handbook of Hydrothermal Technology. William Andrew: 2012.
    [4] Breck, D. W., Zeolite Molecular Sieves: Structure, Chemistry, and Use. Wiley: 1973.
    [5] Barrer, R. M., Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press: 1978.
    [6] Morris, R. E., J. Mater. Chem. 2005, 15, 931-938.
    [7] McCusker, L.; Liebau, F.; Engelhardt, G., Nomenclature of Structural and Compositional Characteristics of Ordered Microporous and Mesoporous Materials with Inorganic Hosts (IUPAC Recommendations 2001). 2001; Vol. 73, p 381-394.
    [8] Zhao, X. S.; Lu, G. Q.; Millar, G. J., Ind. Eng. Chem. Res. 1996, 35, 2075-2090.
    [9] Flanigen, E. M.; Bennett, J. M.; Grose, R. W.; Cohen, J. P.; Patton, R. L.; Kirchner, R. M.; Smith, J. V., Nature 1978, 271, 512-516.
    [10] Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier, W. M., J. Phys. Chem. 1981, 85, 2238-2243.
    [11] Baerlocher, C.; McCusker, L. B.; Olson, D. H., Atlas of zeolite framework types. Elsevier: 2007.
    [12] Olson, D. H.; Haag, W. O.; Lago, R. M., J. Catal. 1980, 61, 390-396.
    [13] Cejka, J., Zeolites and Ordered Mesoporous Materials: Progress and Prospects: the 1st FEZA School on Zeolites. Gulf Professional Publishing: 2005; Vol. 157.
    [14] Auerbach, S. M.; Carrado, K. A.; Dutta, P. K., Handbook of Zeolite Science and Technology. CRC press: 2003.
    [15] Davis, M. E.; Lobo, R. F., Chem. Mater. 1992, 4, 756-768.
    [16] Cejka, J.; Van Bekkum, H.; Corma, A.; Schueth, F., Introduction to Zeolite Molecular Sieves. Elsevier: 2007; Vol. 168.
    [17] Zhdanov, S. P., Some Problems of Zeolite Crystallization. American Chemical Society: 1974; Vol. 101, p 20-43.
    [18] Breck, D. W., J. Chem. Educ. 1964, 41, 678.
    [19] Bodart, P.; Nagy, J.; Gabelica, Z.; Derouane, E., J. Chim. Phys. 1986, 83, 777-790.
    [20] Persson, A. E.; Schoeman, B. J.; Sterte, J.; Otterstedt, J. E., Zeolites 1994, 14, 557-567.
    [21] Na, K.; Choi, M.; Ryoo, R., Microporous Mesoporous Mater. 2013, 166, 3-19.
    [22] van Donk, S.; Bitter, J. H.; Verberckmoes, A.; Versluijs-Helder, M.; Broersma, A.; de Jong, K. P., Angew. Chem. 2005, 117, 1384-1387.
    [23] Perez-Ramirez, J.; Christensen, C. H.; Egeblad, K.; Christensen, C. H.; Groen, J. C., Chem. Soc. Rev. 2008, 37, 2530-2542.
    [24] Burton, A.; Elomari, S.; Chen, C.-Y.; Medrud, R. C.; Chan, I. Y.; Bull, L. M.; Kibby, C.; Harris, T. V.; Zones, S. I.; Vittoratos, E. S., Chem. Eur. J. 2003, 9, 5737-5748.
    [25] Corma, A.; Diaz-Cabanas, M. J.; Jorda, J. L.; Rey, F.; Sastre, G.; Strohmaier, K. G., J. Am. Chem. Soc. 2008, 130, 16482-16483.
    [26] Corma, A.; Diaz-Cabanas, M. J.; Martinez-Triguero, J.; Rey, F.; Rius, J., Nature 2002, 418, 514-517.
    [27] Freyhardt, C. C.; Tsapatsis, M.; Lobo, R. F.; Balkus, K. J.; Davis, M. E., Nature 1996, 381, 295-298.
    [28] Huang, L. R.; Cox, E. C.; Austin, R. H.; Sturm, J. C., Science 2004, 304, 987-990.
    [29] Strohmaier, K. G.; Vaughan, D. E. W., J. Am. Chem. Soc. 2003, 125, 16035-16039.
    [30] Wagner, P.; Yoshikawa, M.; Tsuji, K.; E. Davis, M.; Wagner, P.; Lovallo, M.; Taspatsis, M., Chem. Commun. 1997, 2179-2180.
    [31] Davis, M. E., Nature 2002, 417, 813-821.
    [32] Tosheva, L.; Valtchev, V. P., Chem. Mater. 2005, 17, 2494-2513.
    [33] Larsen, S. C., J. Phys. Chem. C 2007, 111, 18464-18474.
    [34] Naik, S. P.; Chiang, A. S. T.; Thompson, R. W., J. Phys. Chem. B 2003, 107, 7006-7014.
    [35] Schoeman, B. J., Microporous Mesoporous Mater. 1998, 22, 9-22.
    [36] Mintova, S.; Valtchev, V.; Kanev, I., Zeolites 1993, 13, 102-106.
    [37] Kerr, G. T., J. Phys. Chem. 1967, 71, 4155-4156.
    [38] van Donk, S.; Janssen, A. H.; Bitter, J. H.; de Jong, K. P., Cat. Rev. 2003, 45, 297-319.
    [39] Triantafillidis, C. S.; Evmiridis, N. P., Ind. Eng. Chem. Res. 2000, 39, 3233-3240.
    [40] Sulikowski, B.; Borbely, G.; Beyer, H.; Karge, H. G.; Mishin, I. W., J. Phys. Chem. 1989, 93, 3240-3243.
    [41] Le Van Mao, R.; Vo, N. T. C.; Sjiariel, B.; Lee, L.; Denes, G., J. Mater. Chem. 1992, 2, 595-599.
    [42] Groen, J. C.; Jansen, J. C.; Moulijn, J. A.; Pérez-Ramírez, J., J. Phys. Chem. B 2004, 108, 13062-13065.
    [43] Sommer, L.; Mores, D.; Svelle, S.; Stöcker, M.; Weckhuysen, B. M.; Olsbye, U., Microporous Mesoporous Mater. 2010, 132, 384-394.
    [44] Groen, J. C.; Peffer, L. A. A.; Moulijn, J. A.; Pérez, R.; amp; x; rez, J., Microporous Mesoporous Mater. 2004, 69, 29-34.
    [45] Groen, J. C.; Peffer, L. A. A.; Moulijn, J. A.; Pérez-Ramírez, J., Chem. Eur. J. 2005, 11, 4983-4994.
    [46] Groen, J. C.; Moulijn, J. A.; Perez-Ramirez, J., J. Mater. Chem. 2006, 16, 2121-2131.
    [47] Groen, J. C.; Bach, T.; Ziese, U.; Paulaime-van Donk, A. M.; de Jong, K. P.; Moulijn, J. A.; Pérez-Ramírez, J., J. Am. Chem. Soc. 2005, 127, 10792-10793.
    [48] Li, X.; Prins, R.; van Bokhoven, J. A., J. Catal. 2009, 262, 257-265.
    [49] Groen, J. C.; Sano, T.; Moulijn, J. A.; Pérez-Ramírez, J., J. Catal. 2007, 251, 21-27.
    [50] Groen, J. C.; Abelló, S.; Villaescusa, L. A.; Pérez-Ramírez, J., Microporous Mesoporous Mater. 2008, 114, 93-102.
    [51] Pérez-Ramírez, J.; Abelló, S.; Bonilla, A.; Groen, J. C., Adv. Funct. Mater. 2009, 19, 164-172.
    [52] Wei, X.; Smirniotis, P. G., Microporous Mesoporous Mater. 2006, 97, 97-106.
    [53] Wu, L.; Degirmenci, V.; Magusin, P. C. M. M.; Lousberg, N. J. H. G. M.; Hensen, E. J. M., J. Catal. 2013, 298, 27-40.
    [54] Boisen, A.; Schmidt, I.; Carlsson, A.; Dahl, S.; Brorson, M.; Jacobsen, C. J. H., Chem. Commun. 2003, 958-959.
    [55] Schmidt, I.; Boisen, A.; Gustavsson, E.; Ståhl, K.; Pehrson, S.; Dahl, S.; Carlsson, A.; Jacobsen, C. J. H., Chem. Mater. 2001, 13, 4416-4418.
    [56] Yang, Z. X.; Xia, Y. D.; Mokaya, R., Adv. Mater. 2004, 16, 727-732.
    [57] Cho, H. S.; Ryoo, R., Microporous Mesoporous Mater. 2012, 151, 107-112.
    [58] Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A., J. Am. Chem. Soc. 2000, 122, 7116-7117.
    [59] Wang, J.; Groen, J. C.; Yue, W.; Zhou, W.; Coppens, M.-O., J. Mater. Chem. 2008, 18, 468-474.
    [60] Tao, Y.; Kanoh, H.; Kaneko, K., J. Am. Chem. Soc. 2003, 125, 6044-6045.
    [61] Jacobsen, C. J. H.; Madsen, C.; Janssens, T. V. W.; Jakobsen, H. J.; Skibsted, J., Microporous Mesoporous Mater. 2000, 39, 393-401.
    [62] Madsen, C.; Madsen, C.; J. H. Jacobsen, C., Chem. Commun. 1999, 673-674.
    [63] Fan, W.; Snyder, M. A.; Kumar, S.; Lee, P.-S.; Yoo, W. C.; McCormick, A. V.; Lee Penn, R.; Stein, A.; Tsapatsis, M., Nat. Mater. 2008, 7, 984-991.
    [64] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Nature 1992, 359, 710-712.
    [65] Wang, H.; Pinnavaia, T. J., Angew. Chem. Int. Ed. 2006, 45, 7603-7606.
    [66] Karlsson, A.; Stöcker, M.; Schmidt, R., Microporous Mesoporous Mater. 1999, 27, 181-192.
    [67] Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D.-H.; Ryoo, R., Nat. Mater. 2006, 5, 718-723.
    [68] Shetti, V. N.; Kim, J.; Srivastava, R.; Choi, M.; Ryoo, R., J. Catal. 2008, 254, 296-303.
    [69] Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R., Nature 2009, 461, 246-249.
    [70] Kim, J.; Park, W.; Ryoo, R., ACS Catalysis 2011, 1, 337-341.
    [71] Hu, S.; Shan, J.; Zhang, Q.; Wang, Y.; Liu, Y.; Gong, Y.; Wu, Z.; Dou, T., Appl. Catal., A 2012, 445–446, 215-220.
    [72] Na, K.; Park, W.; Seo, Y.; Ryoo, R., Chem. Mater. 2011, 23, 1273-1279.
    [73] Park, W.; Yu, D.; Na, K.; Jelfs, K. E.; Slater, B.; Sakamoto, Y.; Ryoo, R., Chem. Mater. 2011, 23, 5131-5137.
    [74] Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, B. F.; Ryoo, R., Science 2011, 333, 328-332.
    [75] Jung, J.; Jo, C.; Cho, K.; Ryoo, R., J. Mater. Chem. 2012, 22, 4637-4640.
    [76] Wu, L.; Degirmenci, V.; Magusin, P. C. M. M.; Szyja, B. M.; Hensen, E. J. M., Chem. Commun. 2012, 48, 9492-9494.
    [77] Zhu, X.; Rohling, R.; Filonenko, G.; Mezari, B.; Hofmann, J. P.; Asahina, S.; Hensen, E. J. M., Chem. Commun. 2014, 50, 14658-14661.
    [78] Pine, S. H.; Sanchez, B. L., J. Org. Chem. 1971, 36, 829-832.
    [79] Johnstone, R. A. W.; Payling, D. W.; Thomas, C., J. Chem. Soc. C 1969, 2223-2224.
    [80] Muzzarelli, R. A. A.; Tanfani, F., Carbohydr. Polym. 1985, 5, 297-307.
    [81] Varoon, K.; Zhang, X.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C.-Y.; Cococcioni, M.; Francis, L. F.; McCormick, A. V.; Mkhoyan, K. A.; Tsapatsis, M., Science 2011, 334, 72-75.
    [82] Jo, C.; Jung, J.; Ryoo, R., Microporous Mesoporous Mater. 2014, 194, 83-89.
    [83] Koegler, J. H.; van Bekkum, H.; Jansen, J. C., Zeolites 1997, 19, 262-269.
    [84] Schmidt-Winkel, P.; Glinka, C. J.; Stucky, G. D., Langmuir 2000, 16, 356-361.
    [85] Gu, F. N.; Wei, F.; Yang, J. Y.; Lin, N.; Lin, W. G.; Wang, Y.; Zhu, J. H., Chem. Mater. 2010, 22, 2442-2450.
    [86] Zhou, X.; Duan, A.; Zhao, Z.; Gong, Y.; Wu, H.; Li, J.; Wei, Y.; Jiang, G.; Liu, J.; Zhang, Y., J. Mater. Chem. A 2014, 2, 6823-6833.
    [87] Zones, S. I. Zeolite SSZ-13 and Its Method of Preparation. US 4544538, 1985.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE