研究生: |
陳祐君 Chen, Yow-Chun |
---|---|
論文名稱: |
對於可行 f(R) 重力模型 的觀測限制 Observational Constraints on Viable f(R) Gravity Models |
指導教授: |
耿朝強
Geng, Chao-Qiang |
口試委員: |
何小剛
He, Xiao-Gang 張敬民 Cheung, Kingman 陳泉宏 Chen, Chuan-Hung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 19 |
中文關鍵詞: | f(R) 、重力 、模型 、觀測 、限制 |
外文關鍵詞: | f(R), gravity, model, observational, constraint |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們列出了可行重力模型的條件,然後在程式 MGCAMB 及 CosmoMC 的使用下,討論及比較可行 f(R) 模型在 ΛCDM 背景下及修改宇宙演化背景下的觀測限制。我們所討論的模型為: Exponential 模型、Tsujikawa 模型、Staroinsky 模型,和 Hu-Sawicki 模型。我們發現某些模型的有些參數在宇宙演化背景被修正的情況下,限制範圍有明顯的改變。在觀察微中子的總質量的限制範圍繪圖後,我們發現當宇宙演化背景被修改時,Starobinsky (n=1) 模型和 Hu-Sawicki (p=2) 模型的微中子總質量的限制範圍遭到了明顯的壓縮。
We discuss the cosmological constraints on viable f(R) models with the ΛCDM and modified backgrounds, respectively, by using the programs of MGCAMB and CosmoMC. We study the viable f(R) gravity theories of the Exponential, Tsujikawa, Starobinsky, and Hu-Sawicki models. We find out that the constraints of some parameters of the f(R) models with modified backgrounds deviate from their counterparts that evolve with the ΛCDM one. By comparing the contour plots of the total neutrino mass Σmν of the f(R) models with different backgrounds, we observe apparent suppression of the ranges of Σmν in the Starobinsky (n=1) and Hu-Sawicki (p=2) models, when the background evolution of the universe is modified.
[1] T. Padmanabhan, Cosmological Constant - the Weight of the Vacuum, Phys. Rept. 380, 235 (2003) [arXiv:hep-th/0212290]
[2] P.J.E.Peebles,B.Ratra,The Cosmological Constant and Dark Energy,Rev. Mod. Phys. 75, 559 (2003) [arXiv:astro-ph/0207347]
[3] A.DeFelice,S.Tsujikawa,f(R)theories,LivingRev.Rel.13,3(2010)[arXiv: 1002.4928 [gr-qc]].
[4] R. C. Nunes, S. Pan, E. N. Saridakis, E. M. C. Abreu, New observational constraints on f(R) gravity from cosmic chronometers, JCAP 1701 no.01, 005 (2017) [arXiv:1610.07518 [astro-ph.CO]]
[5] N. A. Lima, A. R. Liddle, Linear perturbations in viable f(R) theories, Phys. Rev. D 88, 043521 (2013) [arXiv:1307.1613 [astro-ph.CO]]
[6] V. Faraoni, Matter instability in modified gravity, Phys. Rev. D 74, 104017 (2006) [arXiv:astro-ph/0610734]
[7] L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa, Conditions for the cosmological viability of f(R) dark energy models, Phys. Rev. D 75, 083504 (2007)
[8] T.Chiba,T.L.Smith,andA.L.Erickcek,Solar System constraints to general f(R) gravity, Phys. Rev. D 75, 124014 (2007)
[9] A. Lewis, A. Challinor, A. Lasenby, Efficient Computation of CMB anisotropies in closed FRW models, Astrophys. J. 538, 473 (2000) [ arXiv:astro-ph/9911177].
[10] A. Hojjati, L. Pogosian and G. -B. Zhao, Testing gravity with CAMB and CosmoMC, JCAP 1108, 005 (2011) [arXiv:2206.4543[astro-ph]].
[11] A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: a Monte-Carlo approach, Phys. Rev. D 66, 103511 (2002) [arXiv:astro-ph/ 0205436].
[12] P. A. R. Ade et al. [Planck Collaboration], Planck 2015 results. XIII. Cosmological parameters, [arXiv:1502.01589 [astro-ph.CO]].
[13] Yong-Seon Song, Hiranya Peiris, Wayne Hu, Cosmological Constraints on f(R) Acceleration Models, Phys. Rev. D 76, 063517 (2007) [arXiv:0706.2399 [astro-ph]]
[14] L. Anderson et al. [BOSS Collaboration], The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples, [arXiv:1312.4877 [astroph.CO]].
[15] P. Astier et al. [SNLS Collaboration], The Supernova Legacy Survey: measurement of ΩM, ΩΛ and w from the first year data set, Astron. Astrophys. 447, 31 (2006)
[16] T. P. Sotiriou, V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82, 451 (2010) [arXiv:0805.1726 [gr-qc]]
[17] D. Baumann Cosmology Part III Mathematical Tripos
[18] K.Bamba, C.-Q.Geng, C.-C.Lee, Phantom crossing in viable f(R) theories, Int. J. Mod. Phys. D 20, 1339 (2011) [arXiv:1108.2557 [gr-qc]]
[19] W. Hu and I. Sawicki, Models of f(R) Cosmic Acceleration that Evade Solar System Tests, Phys. Rev. D 76, 064004 (2007) [arXiv:0705.1158 [astro-ph]].
[20] K.Bamba,C.-Q.Geng,andC.-C.Lee,Cosmological evolution in exponential gravity, JCAP 1008, 021 (2010) [arXiv:1005.4574 [astro-ph.CO]].
[21] L. Yang, C. -C. Lee, L. -W. Luo, C. -Q. Geng, Observational Constraints on Exponential Gravity, Phys. Rev. D 82, 103515 (2010)
[22] K. -S. Hannu, Cosmological Perturbation Theory, (2015)
[23] G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion,Phys.Rev.D77,046009(2008)[arXiv:0712.4017[hepth]].
[24] S.Tsujikawa,Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints, Phys. Rev. D 77, 023507 (2008) [arXiv:0709.1391 [astro-ph]]
[25] A. A. Starobinsky, Disappearing cosmological constant in f(R) gravity. JETP Lett. 86, 157 (2007) [arXiv:0706.2041 [astro-ph]]
[26] T. Giannantonio, M. Martinelli, A. Silvestri, A. Melchiorri, New constraints onparametrisedmodifiedgravityfromcorrelationsoftheCMBwithlargescale structure, JCAP 1004, 030 (2010)
[27] P. Peter, Cosmological Perturbation Theory, [arXiv:1303.2509 [astro-ph.CO]]
[28] C. -Q. Geng, C. -C. Lee, and J. -L. Shen, Matter Power Spectra in Viable f(R) Gravity Models with Massive Neutrinos, Phys. Lett. B 740, 285 (2015) [arXiv:1411.3813 [astro-ph.CO]]