研究生: |
楊淑媚 Yang, Shu-Mei |
---|---|
論文名稱: |
微米級尺寸發光二極體陣列之光學特性模擬分析 Optical Simulation and Analysis of Micron Scaled LED Array |
指導教授: |
趙煦
Chao, Shiuh 林建中 Lin, Chien-Chung |
口試委員: |
武東星
Wuu, Dong-Sing 盧廷昌 Lu, Tien-Chang 黃智方 Huang, Chih-Fang |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 發光二極體 、微發光二極體 、顯示器 、色差 |
外文關鍵詞: | LED, microLED, display, color variation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微米級LED顯示器技術已被視為是下世代顯示器的主流技術之一。微米級LED具有許多優良的特性,例如廣色域、高亮度、低耗電以及快速響應時間。未來在擴增實境(Augmented Reality, AR)和混合實境(Mixed Reality, MR)的應用,更被視為最具有競爭力的技術。
本研究提出一套模擬架構,用於計算全彩微米級RGB LED顯示器的的光型和色差,包含miniLED 與microLED,並據此進行性能的評估。透過這項研究,我們探討了影響微米級RGB LED 顯示器光學性能的重要因子,包含有無基板、基板厚度、基板切割角、模塑層的形狀及氣泡等。透過模擬得知,其中基板厚度及切割角將在光學性能的設計上扮演重要的角色。基板及切割角的最佳化可影響光場分布並改善角度色差和圖像品質。而且,圖案化的基板可以提高光提取效率。然而由於紅光、綠光和藍光的光場分布不一致也增加了色差,需要透過精心的光學設計才能使光分佈均勻。我們並製作相對應的樣品,通過實驗驗證,顯示與模擬結果具有良好的一致性。
通過這項研究,可得知影響微米級LED顯示器光學性能的重要因子。我們認為本研究工作對於未來使用microLED技術實現下一世代高品質顯示器,具有重要的參考價值。
Micron-scale LED display technology has been recognized as one of the mainstream technologies for next generation displays. Micron-scale LEDs have many excellent features such as wide color gamut, high brightness, low power consumption, and fast response time, and are considered to be the most competitive technologies in future Augmented Reality (AR) and Mixed Reality (MR) applications.
This study proposes a simulation scheme for calculating the light pattern and color variation of a full-color micron-scale RGB LED display, including miniLEDs and microLEDs, and evaluating performance accordingly. Through this study, we explored important factors affecting the optical performance of micron-scale RGB LED displays, including the presence or absence of substrates, substrate thickness, substrate cutting angle, shape of the molded layer, and bubbles. Through simulation, the thickness of the substrate and the cutting angle will play an important role in the design of optical properties. Optimization of the substrate and cutting angle can affect the light field distribution and improve angular color variation and image quality. We also fabricated corresponding samples and measured the optical performance, which were verified and showed good agreement with the simulation results.
Through this research, important factors affecting the optical performance of micron-sized LED displays are known. We believe that this research work has important reference value for the realization of next-generation microLED high-quality displays in the future.
1. H. X.Jiang, S. X.Jin, J.Li, J.Shakya, andJ. Y.Lin, "III-nitride blue microdisplays," Appl. Phys. Lett. 78, 1303–1305 (2001).
2. C.-W.Jeon, K.-S.Kim, andM. D.Dawson, "Fabrication of Two-Dimensional InGaN-Based Micro-LED Arrays," phys. stat. sol.(a) 192, 325–328 (2002).
3. H. X.Jiang, J. Y.Lin, J. Y. Lin, J. Y.Lin, J. Y. Lin, J. Y.Lin, andJ. Y. Lin, "Nitride micro-LEDs and beyond - a decade progress review," Opt. Express 21, A475-484 (2013).
4. E. H.Virey andN.Baron, "Status and Prospects of microLED Displays," SID Symp. Dig. Tech. Pap. 49, 593–596 (2018).
5. T.Wu, C.-W.Sher, Y.Lin, C.-F.Lee, S.Liang, Y.Lu, S.-W.Huang Chen, W.Guo, H.-C.Kuo, andZ.Chen, "Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology," Appl. Sci. 8, 1557 (2018).
6. Z.Fan, J.Lin, H. J.-J. of P. D. A.Physics, andU.2008, "III-nitride micro-emitter arrays: development and applications," J. Phys. D. Appl. Phys. 41, 094001 (2008).
7. Z.Liu, W. C.Chong, K. M.Wong, andK. M.Lau, "GaN-based LED micro-displays for wearable applications," Microelectron. Eng. 148, 98–103 (2015).
8. T.Fujii, C.Kon, Y.Motoyama, K.Shimizu, T.Shimayama, T.Yamazaki, T.Kato, S.Sakai, K.Hashikaki, K.Tanaka, andY.Nakano, "4032 ppi High-resolution OLED microdisplay," J. Soc. Inf. Disp. 26, 178–186 (2018).
9. Wing Cheung Chong andKei May Lau, "Performance Enhancements of Flip-Chip Light-Emitting Diodes With High-Density n-Type Point-Contacts," IEEE Electron Device Lett. 35, 1049–1051 (2014).
10. Y.Huang, G.Tan, F.Gou, M. C.Li, S. L.Lee, andS. T.Wu, "Prospects and challenges of mini-LED and micro-LED displays," J. Soc. Inf. Disp. (2019).
11. S. R.Forrest, "The road to high efficiency organic light emitting devices," Org. Electron. physics, Mater. Appl. 4, 45–48 (2003).
12. C.-C.Lin, Y.-H.Fang, M.-J.Kao, P.-K.Huang, F.-P.Chang, L.-C.Yang, andC.-I.Wu, "Ultra-Fine Pitch Thin-Film Micro LED Display for Indoor Applications," SID Symp. Dig. Tech. Pap. 49, 782–785 (2018).
13. E. H.Virey andN.Baron, "45-1: Status and Prospects of microLED Displays," SID Symp. Dig. Tech. Pap. 49, 593–596 (2018).
14. S. S.Konoplev, K. A.Bulashevich, andS. Y.Karpov, "From Large-Size to Micro-LEDs: Scaling Trends Revealed by Modeling," Phys. Status Solidi 1700508 (2017).
15. H. K.Lee, J. S.Yu, andY. T.Lee, "Thermal analysis and characterization of the effect of substrate thinning on the peformances of GaN-based light emitting diodes," Phys. Status Solidi 207, 1497–1504 (2010).
16. C. E.Lee, Y. C.Lee, H. C.Kuo, M. R.Tsai, T. C.Lu, andS. C.Wang, "High brightness GaN-based flip-chip light-emitting diodes by adopting geometric sapphire shaping structure," Semicond. Sci. Technol. 23, (2008).
17. J.-T.Oh, S.-Y.Lee, Y.-T.Moon, J. H.Moon, S.Park, K. Y.Hong, K. Y.Song, C.Oh, J.-I.Shim, H.-H.Jeong, J.-O.Song, H.Amano, andT.-Y.Seong, "Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures," Opt. Express 26, 11194 (2018).
18. A. I.Zhmakin, "Enhancement of light extraction from light emitting diodes," Phys. Rep. 498, 189–241 (2011).
19. T. K.Kim, M. U.Cho, J. M.Lee, Y.-J.Cha, S. K.Oh, B.Chatterjee, J.-H.Ryou, S.Choi, andJ. S.Kwak, "Improved Light Output Power of 16 × 16 Pixelated Micro-LEDs for Headlights by Enhancing the Reflectivity and Coverage of the p -Electrode," Phys. Status Solidi 1700571, 1700571 (2018).
20. X.Ding, Y.Tang, Z.Li, J.Li, Y.Xie, andL.Lin, "Multichip LED Modules with V-Groove Surfaces for Light Extraction Efficiency Enhancements Considering Roughness Scattering," IEEE Trans. Electron Devices 64, 182–188 (2017).
21. D.Hwang, A.Mughal, C. D.Pynn, S.Nakamura, andS. P.DenBaars, "Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs," Appl. Phys. Express 10, 032101 (2017).
22. Z.Gong, S.Jin, Y.Chen, J.McKendry, D.Massoubre, I. M.Watson, E.Gu, andM. D.Dawson, "Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes," J. Appl. Phys. 107, 013103 (2010).
23. J. R.Bonar, G. J.Valentine, Z.Gong, J.Small, andS.Gorton, "High-brightness low-power consumption microLED arrays," in Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XX (Proc. SPIE OPTO, 2016), Vol. 9768, p. 97680Y.
24. H. X.Jiang andJ. Y.Lin, "Nitride micro-LEDs and beyond - a decade progress review," Opt. Express 21, A475 (2013).
25. S. S.Park, I.Sohn, E.Cho, S.Park, andE.Kim, "Color shift reduction of liquid crystal displays by controlling light distribution using a micro-lens array film," IEEE/OSA J. Disp. Technol. 8, 643–649 (2012).
26. F.Gou, E.-L.Hsiang, G.Tan, P.-T.Chou, Y.-L.Li, Y.-F.Lan, andS.-T.Wu, "Angular color shift of micro-LED displays," Opt. Express 27, A746 (2019).
27. Z.Gong, S.Jin, Y.Chen, J.McKendry, D.Massoubre, I. M.Watson, E.Gu, andM. D.Dawson, "Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes," J. Appl. Phys. 107, 013103 (2010).
28. P.Royo, R. P.Stanley, M.Ilegems, K.Streubel, andK. H.Gulden, "Experimental determination of the internal quantum efficiency of AlGaInP microcavity light-emitting diodes," J. Appl. Phys. 91, 2563–2568 (2002).
29. K. A.Bulashevich andS. Y.Karpov, "Impact of surface recombination on efficiency of III-nitride light-emitting diodes," Phys. Status Solidi - Rapid Res. Lett. 10, 480–484 (2016).
30. T.Gessmann andE. F.Schubert, "High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications," J. Appl. Phys. 95, 2203–2216 (2004).
31. T.-X.Lee, K.-F.Gao, W.-T.Chien, andC.-C.Sun, "Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate," Opt. Express 15, 6670 (2007).
32. M. S. Ü.Strite, M.Selim, andS.Strite, "Resonant cavity enhanced photonic devices APPLIED PHYSlCS REVIEWS Resonant cavity enhanced photonic devices," J. Appl. Phys. 607, (1995).
33. J. K.Kim, J.-Q.Xi, andE. F.Schubert, "Omni-directional reflectors for light-emitting diodes," Light. Diodes Res. Manuf. Appl. X 6134, 61340D (2006).
34. T.Gessmann, E. F.Schubert, J. W.Graff, andK. P.Streubel, "AlGaInP light-emitting diodes with omnidirectionally reflecting submount," Light. Diodes Res. Manuf. Appl. VII 4996, 26 (2003).
35. C.-Y.Huang, H.-M.Ku, andS.Chao, "Light extraction enhancement for InGaN/GaN LED by three dimensional auto-cloned photonics crystal," Opt. Express 17, 23702 (2009).
36. B. S.Cheng, C. H.Chiu, K. J.Huang, C. F.Lai, H. C.Kuo, C. H.Lin, T. C.Lu, S. C.Wang, andC. C.Yu, "Enhanced light extraction of InGaN-based green LEDs by nano-imprinted 2D photonic crystal pattern," Semicond. Sci. Technol. 23, (2008).
37. L.Tian, N.Stojanovic, D. Y.Song, A. A.Bernussi, J. M.Berg, andM.Holtz, "Influence of photonic nanotexture on the light extraction efficiency of GaN," Appl. Phys. Lett. 91, 2–4 (2007).
38. D.-H.Kim, D. S.Shin, andJ.Park, "Enhanced light extraction from GaN based light-emitting diodes using a hemispherical NiCoO lens," Opt. Express 22, A1071 (2014).
39. J.Gan, S.Ramakrishnan, andF. Y.Yeoh, "A review on improvement of led light extraction efficiency through a micro repeating structure," Rev. Adv. Mater. Sci. 42, 92–101 (2015).
40. T.Wu, C.-W.Sher, Y.Lin, C.-F.Lee, S.Liang, Y.Lu, S.-W.Huang Chen, W.Guo, H.-C.Kuo, andZ.Chen, "Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology," Appl. Sci. 8, 1557 (2018).
41. J.Silver, P.Harris, G.Fern, J.Bonar, G.Valentine, andS.Gorton, "A Novel Approach to the Manufacture of Micro-LED Colour Conversion Structures," Proceeding Int. Disp. Work. 23, 1183–1186 (2016).
42. D.Bozyigit andV.Wood, "Challenges and solutions for high-efficiency quantum dot-based LEDs," MRS Bull. 38, 731–736 (2013).
43. C.-M.Kang, D.-J.Kong, J.-P.Shim, S.Kim, S.-Y. S.-B.Choi, J.-Y.Lee, J.-H.Min, D.-J.Seo, S.-Y. S.-B.Choi, andD.-S.Lee, "Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display," Opt. Express 25, 2489 (2017).
44. S. C.Hsu, L. A.Ke, H. C.Lin, T. M.Chen, H. Y.Lin, Y. Z.Chen, Y. L.Chueh, H. C.Kuo, andC. C.Lin, "Fabrication of a Highly Stable White Light-Emitting Diode with Multiple-Layer Colloidal Quantum Dots," IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
45. S. C.Hsu, Y. H.Chen, Z. Y.Tu, H. V.Han, S. L.Lin, T. M.Chen, H. C.Kuo, andC. C.Lin, "Highly Stable and Efficient Hybrid Quantum Dot Light-Emitting Diodes," IEEE Photonics J. 7, 1–10 (2015).
46. G. S.Lee, J. C.Kim, andT.-H.Yoon, "34-1: Electrode Structure for Fringe-Field Switching Mode with Reduced Color Shift," SID Symp. Dig. Tech. Pap. 38, 1244–1247 (2007).
47. R.Lu, Q.Hong, Z.Ge, andS. T.Wu, "Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight," Opt. Express 14, 429–438 (2006).
48. M.Jiao, Z.Ge, andS. T.Wu, "Broadband wide-view LCDs with small color shift," IEEE/OSA J. Disp. Technol. 5, 331–334 (2009).
49. N.Matsunaga, I.Fujiwara, J.Watanabe, T.Ando, K.Miyazaki, andT.Ito, "51.2: New Front Surface Film for Improving the Viewing-Angle Properties of TN-Mode TFT-LCDs," SID Symp. Dig. Tech. Pap. 38, 1559–1562 (2007).
50. M. H.Lu, M. S.Weaver, T. X.Zhou, M.Rothman, R. C.Kwong, M.Hack, andJ. J.Brown, "High-efficiency top-emitting organic light-emitting devices," Appl. Phys. Lett. 81, 3921–3923 (2002).
51. G.Tan, J.-H.Lee, S.-C.Lin, R.Zhu, S.-H.Choi, andS.-T.Wu, "Analysis and optimization on the angular color shift of RGB OLED displays," Opt. Express 25, 33629 (2017).
52. N. S.Kim, W. Y.Lee, andM. C.Suh, "Suppression of the color shift of microcavity organic light-emitting diodes through the introduction of a circular polarizer with a nanoporous polymer film," J. Inf. Disp. 19, 91–98 (2018).
53. D.Braun, "Crosstalk in passive matrix polymer LED displays," Synth. Met. 92, 101–113 (1998).
54. T.Kohno, H.Kageyama, M.Miyamoto, N.Nakamura, andH.Akimoto, "AMOLEDs with a pixel-driving architecture for eliminating crosstalk," IEEE Trans. Electron Devices 59, 3024–3029 (2012).
55. M.Diethelm, L.Penninck, S.Altazin, R.Hiestand, C.Kirsch, andB.Ruhstaller, "Quantitative analysis of pixel crosstalk in AMOLED displays," J. Inf. Disp. 19, 61–69 (2018).
56. R.Safaee-Rad andM.Aleksic, "Comparative performance analysis of mobile displays," Color Imaging XVII Displaying, Process. Hardcopy, Appl. 8292, 82920M (2011).
57. J. K.Lee, S.Cho, andD. W.Kang, "Analysis of light leakage between the adjacent pixels in a color-filter stacked white OLED display," Displays 45, 6–13 (2016).
58. L.Wang, Y.Tu, L.Chen, P.Zhang, K.Teunissen, andI.Heynderickx, "Cross-talk acceptability in natural still images for different (auto)stereoscopic display technologies," J. Soc. Inf. Disp. 18, 405 (2010).
59. S.-M.Yang, P.-H.Wang, C.-H.Chao, C.-W.Chu, Y.-S.Chen, F.-P.Chang, Y.-H.Fang, C.-C.Lin, andC.-I.Wu, "The Substrate Thickness Dependence on Micro LED Chip Arrays," SID Symp. Dig. Tech. Pap. 1724–1727 (2019).
60. S.-M.Yang, P.Wang, C.Chao, C.Chu, Y.-T.Yeh, Y.-S.Chen, F.Chang, Y.Fang, C.Lin, andC.Wu, "Angular color variation in micron-scale light-emitting diode arrays," Opt. Express 27, A1308–A1323 (2019).
61. E. F.Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006).
62. C. H.Chiu, P. M.Tu, C. C.Lin, D. W.Lin, Z. Y.Li, K. L.Chuang, J. R.Chang, T. C.Lu, H. W.Zan, C. Y.Chen, H. C.Kuo, S. C.Wang, andC. Y.Chang, "Highly efficient and bright LEDs overgrown on GaN nanopillar substrates," IEEE J. Sel. Top. Quantum Electron. 17, 971–978 (2011).