簡易檢索 / 詳目顯示

研究生: 孫世穎
Sun, Shih-Ying
論文名稱: Low-Noise Amplifiers for 24/77 GHz Automotive Anti-Collision Radars
應用於24/77 GHz 汽車防撞雷達之低雜訊放大器
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員: 徐碩鴻
Hsu, Shawn S. H.
邱煥凱
黃國威
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 58
中文關鍵詞: 低雜訊放大器雜訊最佳化變壓器回授式匹配電路基底耦合傳輸線匹配電路K-頻段W-頻段
外文關鍵詞: Low-noise amplifiers, Noise optimization, Transformer-feedback matching networks, Patterned ground shields matching networks, K-band, W-band
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, four low-noise amplifiers (LNAs) for 24/77 GHz automotive anti-collision radars systems are discussed regarding their design, simulation, and measurements.
    For automotive anti-collision radar systems at K-band, a 17.5-29.5 GHz wideband low-noise amplifier is realized in 0.18-µm CMOS. By the current-reuse technique, gate-source transformer-feedback and T-coil peaking transformer-feedback matching networks are used at the center frequency of 24 GHz for inter-stage matching. Under only 19 mW power consumption, the amplifier achieves a 10.4-dB flat power gain with only a 4.8 dB noise figure within the 12-GHz 3dB bandwidth. Another K-band LNA adopts the customized dual-gate NMOS transistors with both gate-source-drain-gate and drain-drain-source-drain trifilars for transformer-feedback. It achieves a 18.5-25 GHz 3dB-bandwidth, power gain of 14.6 dB, noise figure of 4.8 dB, and the chip area is only 0.24 mm2. Due to the combination of three inductors to be one trifilar, the total chip area is reduced effectively to achieve the low cost purpose.
    For the 77-GHz automotive anti-collision radars, we also propose two LNAs operating under very low power and with a small chip area. Both amplifiers utilize the noise optimization technique with the minimum noise measure MMIN and grounded-coplanar waveguide (GCPW) structure with the patterned ground shields (PGS) matching network. In the first 77-GHz amplifier, the Tee- and π- matching networks are both used for noise and power optimization, achieving a minimum noise figure of 5.97 dB, power gain of 13.93 dB, and power consumption of 24 mW. The second LNA uses an input Tee matching combining with output transformer, achieving a noise figure of 6.05 dB, power gain of 14.2 dB, and a 15-GHz 3dB-bandwidth. Compared with previous studies, mostly use the Tee type transmission line for matching network, this research proposes new π and transformer types of matching network with PGS transmission lines, which has not been reported before for W-band applications. The proposed 77-GHz LNAs presented the figure-of-merit (FoM) among the best compared with the other published Si-based LNAs in a similar operating frequency.


      於此論文中,主要將探討四項通訊系統低雜訊放大器之設計、模擬與量測,按照其應用,可分為24 GHz與77 GHz汽車防撞雷達頻段。
      在K-band汽車防撞雷達頻段,此論文採用0.18µm CMOS完成一項17.5-29.5 GHz寬頻低雜訊放大器(A 17.5-29.5 GHz wideband low-noise amplifier)。採用電流重複使用技巧、閘極-源極變壓器回授式匹配電路與T-coil peaking變壓器回授式匹配電路,並且以中心頻率24 GHz作級間匹配。在僅19 mW功耗下,達成10.4 dB的平坦式功率增益(Power gain)與12 GHz的3dB頻寬下,僅有4.8 dB雜訊指數(Noise Figure)。另一項三端式變壓器回授式雙閘極K-band低雜訊放大器(A trifilar transformer-feedback dual-gate K-band LNA)則採用雙閘極電晶體搭配客製化閘極-源極-汲極-閘極與汲極-汲極-源級-汲極三端式變壓器回授式匹配電路。完成3dB頻寬為18.5-25 GHz、功率增益14.6 dB、雜訊指數4.8 dB,並且晶片面積僅為0.24 mm2。由於將三顆電感合成為一顆三端式變壓器,其整體晶片面積有效下降,達到低成本目的。
      在77-GHz汽車防撞雷達頻段,我們提出兩顆操作在非常低功率與小晶片面積的低雜訊放大器,皆以MMIN為準則之雜訊最佳化方法搭配基底耦合共地面波導匹配網路。在第一顆77-GHz放大器,採用Tee與π型匹配網路作雜訊與功率最佳化,完成雜訊指數5.97 dB、功率增益13.93 dB及功耗為24 mW。第二顆低雜訊放大器則採用輸入Tee型結合輸出變壓器型,完成雜訊指數6.05 dB、功率增益14.2 dB及15 GHz的3 dB頻寬。比較先前文獻皆以Tee型傳輸線做為匹配網路,本研究提出π與變壓器型之新型基底耦合傳輸線匹配網路,在W-band頻段尚未有文獻探討。本研究提出之77-GHz低雜訊放大器,比較其它文獻以矽為基礎之低雜訊放大器在相似的操作頻率下,其FoM值為最佳。

    ACKNOWLEDGEMENT ii ABSTRACT iii 摘要 v CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Motivaion 1 1.2 Thesis Organization 2 Chapter 2 Basics of Low-Noise Amplifier Design 3 2.1 Important Specifications of LNA 3 2.2 Summary and Discussion 7 Chapter 3 K-Band Low-Noise Amplifiers 8 3.1 Current-Reuse Wideband LNA using Transformer-Feedback 8 3.1.1 Gate-Source Transformer-Feedback Matching Network 8 3.1.2 Current-Reuse Technique for LNA Design 11 3.1.3 T-Coil Peaking Transformer-Feedback Matching Network 12 3.1.4 Circuit Topology and Results 15 3.2 Dual-Gate LNA using Trifilar Transformer-Feedback 19 3.2.1 Dual-Gate NMOS in 0.18 μm CMOS Technology 19 3.2.2 Gate-Source-Drain-Gate Transformer-Feedback Matching Network 21 3.2.3 Drain-Drain-Source-Drain Transformer-Feedback Matching Network 25 3.2.4 Circuit Topology and Results 28 3.3 Summary and Discussion 32 Chapter 4 77-GHz Low-Noise Amplifiers 33 4.1 A 5.97 dB NF LNA using Patterned Ground Shields 33 4.1.1 Design of GCPW Line with Patterned Ground Shields 34 4.1.2 Determination of Transistor Geometry 36 4.1.3 Matching Network and Layout Consideration 38 4.1.4 Circuit Topology and Results 41 4.2 A 6.05 dB NF LNA using PGS Transformer-Feedback 45 4.2.1 Output PGS Source-Drain Transformer-Feedback 45 4.2.2 Design Considerations of Matching Network 46 4.2.3 Circuit Topology and Results 48 4.3 Summary and Discussion 52 Chapter 5 Conclusion and Future Work 54 References 56

    [1] C. C. Chen, H. Y. Yang, Y. S. Lin, “A 21–27 GHz CMOS wideband LNA with 9.3±1.3 dB gain and 103.9±8.1 ps group-delay using standard 0.18 µm CMOS technology,” Radio and Wireless Symp., pp. 586-589, 2009.
    [2] W. Cho and S. Hsu, “An ultra-low-power 24 GHz low-noise amplifier using 0.13 µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 681-683, 2010.
    [3] Y. Wei, S. Hsu, and J. Jin, “A low-power low-noise amplifier for K-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116-118, Feb. 2009.
    [4] S. C. Shin et. al., “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448-450, Jul. 2005.
    [5] A.Y.-K. Chen, Y. Baeyens, Young-Kai Chen, and Jenshan Lin, “A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.103-105, 2010.
    [6] R. Reuter and Yi Yin, “A 77 GHz (W-band) SiGe LNA with a 6.2 dB noise figure and gain adjustable to 33 dB,” Bipolar/BiCMOS Circuits and Technology Meeting, pp.1-4, 2006.
    [7] L. Gilreath, V. Jam, and P. Heydan, “A W-band LNA in 0.18-µm SiGe BiCMOS,” 2010 IEEE International Symposium on Circuits and Systems (ISCAS 2010) , pp.753-756, 2010.
    [8] M. Fahimnia, M.R. Nezhad-Ahamadi, B. Biglarbeigian, S. Safavi-Naieni, M. Mohammad-Taheri, and Y. Wang, “A 77 GHz low noise amplifier using low-cost 0.13µm CMOS technology,” Microsystems and Nanoelectronics Research Conference, pp.73-75, 2009.
    [9] B. Heydari, M. Bohsali, E. Adabi, and A.M. Niknejad, “Millimeter-wave devices and circuit blocks up to 104 GHz in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, 2007.
    [10] H.-K. Chen, D.-C. Chang, Y.-Z. Juang, and S.-S. Lu, “A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 616–618, Aug. 2007.
    [11] Chi-Hsien Lin, Yi-Shuo Wu, Yen-Liang Yeh, Shou-Hsien Weng, Guan-Yu Chen, Che-Hao Shen, and Hong-Yeh Chang, “A 24-GHz highly integrated transceiver in 0.5-µm E/D-PHEMT process for FMCW automotive radar applications,” Asia-Pacific Microw. Conference Proceedings (APMC), pp. 512-515, 2010.
    [12] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, no. 5, pp. 743-752, May 1998.
    [13] M. T. Reiha, J. R. Long, and J. J. Pekarik, “A 1.2 V reactive-feedback 3.1–10.6 GHz ultra wideband low-noise amplifier in 0.13 µm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp.1023-1033, May 2007.
    [14] Y. Lin, S. Hsu, J. Jin, and C. Chan, “A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 32–234, Mar. 2007.
    [15] D. Cassan and J. R. Long, “A 1 V transformer-feedback low noise amplifier for 5–6 GHz WLAN in 0.18 µm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 427–435, Mar. 2003.
    [16] Shekhar, S. Walling, J.S., Allstot, D.J., “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, pp. 2424-2439, 2006.
    [17] A. Meaamar, Chirn Chye Boon, Kiat Seng Yeo, and Manh Anh Do, “A wideband low power low-noise amplifier in CMOS technology,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp.773-782, 2010.
    [18] Chang-Tsung Fu, Chien-Nan Kuo, and S.S. Taylor, “Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching,” IEEE Trans. Microwave Theory Tech., vol. 58, pp.795-806, 2010.
    [19] D.A. Grant, “Magnetic compensation for effect of Miller capacitance in power MOSFETs,” Electronics Letters, vol. 38, pp. 753-755, 2002.
    [20] J.-H. Lee, C.-C. Chen, and Y.-S. Lin, “3.7 mW 24 GHz LNA with 10.1 dB gain and 4.5 dB NF in 0.18 µm CMOS technology,” Electronics Letters, vol. 46, 2010.
    [21] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18 µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004.
    [22] To-Po Wang and Huei Wang, “A Broadband 42□63-GHz Amplifier Using 0.13-μm CMOS Technology,” IEEE MTT-S International Microw. Symp., pp.1779-1782, 2007.
    [23] D.K. Shaeffer and T.H. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, 1997.
    [24] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
    [25] H.-K. Chen, D.-C. Chang, Y.-Z. Juang, and S.-S. Lu, “A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 616–618, Aug. 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE