研究生: |
李柏穎 Po-Ying Li |
---|---|
論文名稱: |
以類神經網路預測擬均向性碳纖維強化聚醚醚酮複材疊層板承受低能量衝擊並經修補後之靜態及疲勞性質 Using Artificial Neural Network in Predicting Tensile and Fatigue Behavior of Repaired Quasi-Isotropic Gr/PEEK Laminates after Low Energy Impact |
指導教授: |
葉孟考博士
Dr. Meng-Kao Yeh 戴念華博士 Dr. Nyan-Hwa Tai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 類神經網路 、熱壓修補 、靜態拉伸強度 、疲勞壽命 、倒傳遞網路 、神經元 |
外文關鍵詞: | Artificial Neural Network, Hot Press Repair, Static Tensile Strength, Fatigue Life, Back-Proporgation Network, Neuron |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以類神經網路來建立擬均向碳纖維強化聚醚醚酮(Gr/PEEK)複合材料 積層板承受低能量衝擊後在不同修補條件下靜態拉伸與疲勞性質之模型,有助於往後複合材料的修補研究,提供航太工業修補複合材料的參考。
文中引進強度與壽命同級假設(SLERA)理論,藉由靜態強度與疲勞強度間的關係來簡化實驗程序,針對複合材料熱壓修補法的各項參數與靜態強度、疲勞壽命間關係,以類神經網路來建立一個預測的模型,可得到複合材料修補方法中各項參數之輸入與輸出間的非線性關係。
文中實際進行90組熱壓修補實驗,並以這些數據建立熱壓修補之類神經網路模型,再以3696組未知數據輸入已建立之模型得到其靜態拉伸強度,從中挑選最強兩組之靜態拉伸強度之修補參數作為最佳修補參數。經過20組修補對照組比較之後,證明該兩組修補參數即為最佳修補參數。最後進行疲勞試驗得到S-N曲線,配合SLERA理論,由靜態強度對比得到合理之疲勞壽命。
參考文獻
1. Gibson, R., Principles of Composite Material Mechanics, Chapter 1, McGraw-Hill, New York, 1994.
2. Haykin, S., Neural Networks a Comprehensive Foundation, Chapter 1, Prentice Hall International, New Jersey, 1999.
3. 葉怡成, 應用類神經網路, 儒林圖書, 第一章, 台北, 中華民國八十六年.
4. Chen, J. H., Jang, S. S., Wong, D. S. H., Ma, C. C. M. and Lin, J. M., “Optimal Design of Filament Winding Using Neural Network Experimental Design Scheme,” Journal of Composite Materials, Vol. 33, No.24, pp. 2281-2300, 1999.
5. Goh, A. T. C., “Neural Networks for Evaluating CPT Calibration Chamber Test Data,” Microcomputers in Civil Engineering, Vol. 10, pp. 147-151, 1995.
6. Chao, P. Y. and Hwang. Y. D., “An Improved Neural Network Model for the Prediction of Cutting Tool Life,” Journal of Intelligent Manufacturing, Vol. 8, pp. 107-115, 1997.
7. 彭釗哲, “以類神經網路在高性能混凝土抗壓強度之應用,” 中華大學土木工程學系碩士論文, 中華民國八十八年.
8. Brown, D. A., Murthy, P. L. N. and Berke, L., “Computational Simulation of Composite Ply Micromechanics Using Artificial Neural Networks,” Microcomputers in Civil Engineering, Vol. 6, pp. 87-97, 1991.
9. Shi, S. M., Xu, L. D. and Liu, B., “Improving the Accuracy of Nonlinear Combined Forecasting Using Neural Networks,” Expert Systems with Applications, Vol. 16, pp. 49-54, 1999.
10. 曾志明, “碳纖維強化聚醚醚酮(Carbon/PEEK)積層板承受熱循環與低能量衝擊後之疲勞行為研究,” 清華大學動力機械工程學系碩士論文,1997.
11. Lustiger, A., Uralil, F. and Newaz, G. M., “Processing and Structural Optimization of PEEK Composites,” Polymer Composites, Vol. 11, No. 1, pp. 65-75, 1990.
12. Lee, Y. and Porter, R. S., “Crystallization of Polyetheretherketone (PEEK) in Carbon Fiber Composites,” Polymer Engineering and Science, Vol. 26, No. 9, pp. 633-639, 1986.
13. Salkind, Mechanics in Application of Composite Materials, Chapter 3 Acamic Press, New York, 1972.
14. Lee, L. J.,Yang, J. N. and Sheu, D. Y., “Prediction of Fatigue Life for Matrix-Dominated Composite Laminates,” Composites Science and Technology, Vol. 46, No. 1, pp. 21-28, 1993.
15. Lafarie-Frenot, M. C. and Henaff-Gardin, C., “Formation and Growth of 90°Ply Fatigue Cracks in Carbon/Epoxy Laminates,” Composites Science and Technology, Vol. 40, No. 3, pp. 307-324, 1991.
16. Jen, M. H. R. and Hsu, J. M., “Fatigue Degradation in Centrally Notched Quasi-Isotropic Laminates,” Journal of Composite Materials, Vol. 24, No. 8, pp. 823-837, 1990.
17. Reifsnider, K. L., Henneke, E. G., Stinchcomb, W. W. and Duke, J. C., “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Hashin, Z. and Herakovich, C. T., Eds., Pergamon Press, New York, pp. 399-420, 1983.
18. Cordell, T. M. and Sjoblem, P. O., “Low Velocity Impact Testing of Composites,” Proceedings of the American Society for Composites, Dayton, Ohio, October 7-9, Technomic Publishing, Lancaster, Penn. U.S.A. pp. 297-312, 1986.
19. Avva, V. S., Vala, J. R. and Jeyaseelan, M., “Effect of Impact and Fatigue Loads on the Strength of Graphite/Epoxy Composites,” Composite Materials: Testing and Design, ASTM STP 893, Whitney, J. M., Ed., American Society for Testing and Materials, pp. 196-206, 1986.
20. Beheshty, M. H. and Harris, B., “A Constant-life Model of Fatigue Behaviour for Carbon-fibre Composites: The Effect of Impact Damage,” Composites Science and Technology, Vol. 58, pp. 9-18, 1999.
21. Heslehurst, R. B., “Challenges in the Repair of Composite Structures—Part 1,” SAMPE Journal, Vol. 33, No. 5, pp. 11-16, 1997.
22. Silverman, E. M. and Griese, R. A., “Joining Method for Graphite/PEEK Thermoplastic Composites,” SAMPE Journal, Vol. 25, No. 5, pp. 34-38, 1989.
23. Zimmerman, K. B. and Liu, D., “An Experimental Investigation of Composite Repair,” Experimental Mechanics, Vol. 36, No. 2, pp. 142-147, 1996.
24. Chue, C. H., Chang, L. C. and Tsai, J. S., “Bonded Repair of a Plate with Inclined Central Crack Under Biaxial Loading,” Composite Structures, Vol. 28, No. 1, pp. 39-45, 1994.
25. Davies, P., Cantwell, W. J., Jar, P. Y., Bourban, P. E., Zysman, V. and Kausch, H. H., “Joining and Repair of a Carbon Fiber-Reinforced Thermoplastic,” Composites, Vol. 22, No. 6, pp. 425-431, 1991.
26. Cantwell, W. J., Davies, P. and Kausch, H. H., “Repair of Impact-Damage Carbon Fiber PEEK Composites,” SAMPE Journal, Vol. 27, No.6, pp. 30-35, 1991.
27. Wilson, T. A. and Graves, M. J., “Repair of Graphite/PEEK APC-2 Using Thermoforming,” SAMPE Quarterly, Vol. 23, No. 1, pp. 51-56, 1991.
28. 周世軒, “受低能量衝擊之碳纖維強化聚醚醚酮(Gr/PEEK)積層板經修補後之靜態拉伸—拉伸疲勞性質研究” 國立清華大學動力機械工程學系碩士論文, 1999.
29. 陳正松, “擬均向性碳纖維強化聚醚醚酮複材疊層板承受低能量衝擊並經修補後之靜態及拉伸─壓縮疲勞性質研究,” 國立清華大學動力機械工程學系碩士論文, 2000.
30. Hahn, H. T. and Kim, R. Y., “Proof Testing of Composite Materials,” Journal of Composite Materials, Vol. 9, pp. 297-311, 1975.
31. Chou, P. C. and Croman, R., “Residual Strength in Fatigue Based on the Strength-Life Equal Rank Assumption,” Journal of Composite Materials, Vol. 12, pp. 177-194, 1978.
32. Barnard, P. M., Butler, R. J. and Curtis, P. T., “The Strength-Life Equal Rank Assumption and Its Application to the Life Prediction of Composite Materials,” International Jounral of Fatigue, Vol. 10, pp. 171-177, 1998.
33. 鄭合志, “擬均向性Gr/PEEK複材積層板在變動負荷下之疲勞可靠度研究,” 國立台灣大學機械工程學研究所博士論文, 2000.
34. 葉怡成, 類神經網路模式應用與實作, 第一章, 儒林圖書, 台北, 中華民國八十六年.
35. Bailey, D. and Thompson, D., “How to Develop Neural-Network,” AI Expert, June, pp 38-47, 1990.
36. Rumelgart, D. E. and McClelland, J. L., Parallel Distributed Processing, Volume 1: Foundations, MIT Press, Cambridge, Massachusetts, 1986.
37. Lee, J. A., Almond, D. P. and Harris, B., “The Use of Neural Networks for Prediction of Fatigue Lives of Composite Materials,” Composite: Part A, Vol. 30, pp. 1159-1169, 1999
38. ASTM D3039-76, “Standard Test Method for Tensile Properties of Fiber-Resin Composites,” ASTM Standards and Literature References for Composite Materials, 2d ed., American Society for Testing and Materials, Philadelphia, PA, 1990.
39. ASTM D3029-84, “Standard Test Method for Impact Resistance of Rigid Plastic Sheeting or Parts by Means of a Tup (Falling Weight),” ASTM Standards and Literature References for Composite Materials, 2d ed., American Society for Testing and Materials, Philadelphia, PA, 1990.
40. 曾志明, “碳纖維強化聚醚醚酮(Carbon/PEEK)積層板承受熱循環與低能量衝擊後之疲勞行為研究,” 清華大學動力機械工程學系碩士論文, 1997.
41. ASTM D3479-76, “Standard Test Method for Tension-Tension Fatigue or Oriented Fiber, Resin Matrix Composites,” Annual Book of ASTM Standards, Vol. 15.03, pp. 142-144, 1988.
42. Mann, N. R., Schafer, R. E. and Singpurwalla, N. D., Method for Statistical Analysis of Reliability and Life Data, Wiley, New York, 1974.
43. Dally, J. W. and Riley, W. F., Experimental Stress Analysis, Chapter 16, McGraw-Hill, New York, 1999.
44. Hwang, W. and Han, K. S., " Fatigue of Composites Fatigue Modulus Concept and Life Prediction," Journal of Composite Materials, Vol. 20, pp.154-165, 1986.
45. Lawrence, J., “Data Preparation for a Neural Network,” AI EXPERT, Nov., pp. 34-41, 1991.