簡易檢索 / 詳目顯示

研究生: 李睿洋
Li, Reui-Yang
論文名稱: 以斑馬魚動物模式研究端粒酶過度表達誘導肝癌發生的功能分析
Functional analysis of telomerase overexpression in hepatocarcinogenesis using transgenic fish
指導教授: 喻秋華
Yuh, Chiou-Hwa
汪宏達
Wang, Horng-Dar
口試委員: 陳培哲
Chen, Pei-Jer
陳律佑
Chen, Liuh-Yow
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 79
中文關鍵詞: 斑馬魚肝細胞癌端粒酶p53 腫瘤抑制蛋白細胞增殖高通量基因克隆技術
外文關鍵詞: zebrafish, HCC, telomerase, p53, cell proliferation, Gateway Cloning
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝細胞癌(HCC)是最常見的肝癌類型,且在全世界統計下癌症死亡率高居第四名。造成肝癌的風險因子有很多,主要可以分成三類,包括:病毒(慢性B型或C型肝炎)、毒素(過量酒精或黃麴毒素攝取)、代謝(肥胖、糖尿病及非酒精性脂肪肝)。肝癌患者通常被診斷出來時已為晚期肝癌,在治療策略上的選擇上包括:手術切除、肝臟移植、局部消融及放射治療效果都不盡理想。肝癌末期患者使用標靶藥物,治療效果很有限,平均可延長壽命三到四個月。因此了解肝癌中遺傳驅動因子致癌機制,可以幫助進一步發展標靶治療。有高達百分之六十的肝癌病患發現了端粒酶 (Telomerase, TERT)基因啟動子區突變,會導致端粒酶的過量表現並促進癌細胞的生長,但是,尚無斑馬魚端粒酶過度表達肝癌模型。這項研究的目的是建立端粒酶過度表達轉基因斑馬魚,研究在肝細胞中過度表達斑馬魚端粒酶是否可以促進肝癌的形成及其機制,我們希望可以使用該模型篩選抗肝癌治療藥物。
    在這項研究當中,我們建立了在肝臟過量表達端粒酶逆轉錄酶(tert)的轉基因斑馬魚,並通過分子及組織病理學的方式研究了肝癌的形成。使用即時核酸定量的方式分析,我們觀察在受精後15天,端粒酶逆轉錄酶轉基因魚中細胞增殖基因(ccne1/cdk1/cdk2)相較於野生種斑馬魚都有顯著性的上升。此外,與肝癌形成有密切相關的β-catenin 下游基因(ccnd1/myca/mycb)也顯著的上升。通過蘇木精-伊紅染色分析,轉基因斑馬魚在細胞分裂及三核比例都有顯著增加,但這些現象在30天時都下降了。為了了解30 天時癌症形成的減少,我們觀察在15及30天中端粒酶逆轉錄酶過量表達也誘導p53表現上升。我們假設p53表現上升減少了過量表達端粒酶逆轉錄酶引發的肝癌形成,這現象也與臨床中觀察到肝癌同時帶有TERT及p53突變相似。為了驗證這一假設,我們將轉基因魚跟tp53突變的魚配種,進一步進行驗證。本次研究當中,我們轉基因斑馬魚模型提供了更加接近臨床肝癌的遺傳背景,未來據此研究更多遺傳變異所導致肝癌形成的機制。


    Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is the fifth leading cause of cancer mortality worldwide. Major risk factors for HCC include viral infection (chronic Hepatitis B and Hepatitis C), substance (alcohol consumption and aflatoxin B1 exposure), and metabolic disorder (diabetes, obesity, and non-alcoholic fatty liver disease). Patients with liver cancer are usually diagnosed as advanced liver cancer. The choice of treatment strategy includes: surgical resection, liver transplantation, local ablation and radiotherapy are not satisfactory. Target therapy for the advanced HCC patients have limited therapeutic effects and only can extend their lifespan by three to four months on average. Therefore, understanding the carcinogenic mechanism of genetic drivers in HCC can help further develop targeted therapy. The top genetic alteration for HCC is telomerase reverse transcriptase (TERT) promoter mutations affecting around 60% of all HCC patients, which leads to overexpression of telomerase and promotes cancer development. However, there is no zebrafish telomere overexpression liver cancer model. The purpose of this study is to establish telomerase overexpression transgenic zebrafish, and to study whether overexpression of zebrafish telomerase in liver cells can promote the formation of liver cancer and its mechanism. We hope that we can use this model to screen anti-liver cancer therapeutic drugs.
    In this study, we generated liver-specific tert overexpression transgenic zebrafish and investigated the cancer formation by molecular and histopathological analysis. Using real-time quantitative PCR, we found the cell proliferation markers (ccne1, cdk1, cdk2) were upregulated in tert transgenic fish as early as 15 day-post-fertilization (dpf). Moreover, β-catenin was associated with HCC, the downstream genes (ccnd1, myca, mycb) were also significantly upregulated. Furthermore, the mitotic figures and trinucleated cells were significantly increased in tert transgenic fish using histopathological analysis by H&E staining. However, these phenomena declined in 30 dpf. To further understand the reduction of cancer at 30 dpf, we found that the tert also induces the up-regulation of p53 mRNA. We hypothesized increment of tp53 diminished the tert overexpression induced HCC, this phenomenon coherent the fact that TERT and p53 mutations are concurrent in HCC. To test this hypothesis, we cross the tert transgenic fish with p53 mutant, and further validate the cancer formation. Our transgenic fish model supplies a clinically relevant background upon which to study how other driver mutations function in HCC.

    致謝------------------------------------------------------------------------------------------------------------------------------------II 中文摘要---------------------------------------------------------------------------------------------------------------------------------IV Abstract---------------------------------------------------------------------------------------------------------------------------------V Table of contents-----------------------------------------------------------------------------------------------------------------------VI Chapter 1 Introduction-------------------------------------------------------------------------------------------------------------------1 1.1 Hepatocellular carcinoma (HCC)-------------------------------------------------------------------------------------------------------1 1.1.1 Risk factors-----------------------------------------------------------------------------------------------------------------------1 1.1.2 Therapeutics for HCC---------------------------------------------------------------------------------------------------------------2 1.1.3 Genetic driver mutations for HCC---------------------------------------------------------------------------------------------------3 1.2 Telomerase reverse transcriptase (TERT)----------------------------------------------------------------------------------------------4 1.2.1 The role of TERT in normal cells and HCC-------------------------------------------------------------------------------------------4 1.2.2 TERT and aging---------------------------------------------------------------------------------------------------------------------5 1.3 Zebrafish in human disease models development----------------------------------------------------------------------------------------6 1.3.1 Zebrafish models in human diseases-------------------------------------------------------------------------------------------------6 1.3.2 Zebrafish models in liver cancer and HCC-------------------------------------------------------------------------------------------7 1.3.3 Zebrafish models in liver cancer and HCC-------------------------------------------------------------------------------------------8 Specific Aims---------------------------------------------------------------------------------------------------------------------------10 Chapter 2 Materials and Methods---------------------------------------------------------------------------------------------------------11 2.1 Rapid amplification of cDNA ends (RACE)---------------------------------------------------------------------------------------------11 2.2 Gateway cloning-BP reaction---------------------------------------------------------------------------------------------------------11 2.3 Site-directed mutagenesis-----------------------------------------------------------------------------------------------------------12 2.4 Gateway cloning-LR reaction---------------------------------------------------------------------------------------------------------13 2.5 Microinjection----------------------------------------------------------------------------------------------------------------------14 2.6 Zebrafish husbandry-----------------------------------------------------------------------------------------------------------------14 2.7 Zebrafish Lines and sample preparation----------------------------------------------------------------------------------------------15 2.8 Zebrafish larvae feeding------------------------------------------------------------------------------------------------------------15 2.9 Genotyping for Zebrafish------------------------------------------------------------------------------------------------------------15 2.10 RNA extraction---------------------------------------------------------------------------------------------------------------------16 2.11 Reverse Transcription Polymerase Chain Reaction------------------------------------------------------------------------------------16 2.12 Real-time quantitative PCR (qPCR)--------------------------------------------------------------------------------------------------17 2.13 H&E staining and Immunochemistry Staining (IHC)------------------------------------------------------------------------------------17 2.14 Telomeric repeat amplification protocol (TRAP) assay-------------------------------------------------------------------------------18 2.15 Statistical analysis---------------------------------------------------------------------------------------------------------------19 Chapter 3 Results-----------------------------------------------------------------------------------------------------------------------20 3.1 Cloning of the zebrafish tert cDNA by RACE------------------------------------------------------------------------------------------20 3.2 Establishment of liver-specific tert over-expression transgenic fish----------------------------------------------------------------20 3.3 The tert overexpression zebrafish display higher telomerase expression and activity compared with WT--------------------------------21 3.4 The tert overexpression zebrafish can induce cell proliferation and activate β-Catenin downstream targets at 15 dpf-----------------22 3.5 The tert overexpression significantly increased the mitotic figures and trinucleated cells in zebrafish at 15 dpf-------------------23 3.6 The hepatocellular carcinogenesis was reduced at 30 dpf in transgenic fish----------------------------------------------------------23 3.7 The p53 expression was up-regulated to inhibit the tert-medicated HCC---------------------------------------------------------------24 3.8 The expression level of cell proliferation markers are upregulated in tert, p53+/- transgenic fish compared to tert alone at 15 dpf-24 3.9 The expression level of cell proliferation markers are similar between tert, p53+/- transgenic fish and tert alone at 30 dpf--------25 Chapter 4 Discussion----------------------------------------------------------------------------------------26 4.1 Possible mechanism of tert mediated liver cancer formation----------------------------------------------27 4.1.1 C-MYC and WNT/ β-Catenin------------------------------------------------------------------------------27 4.1.2 NF-kB-------------------------------------------------------------------------------------------------28 4.1.3 p53 pathway-------------------------------------------------------------------------------------------29 4.3 Aging and telomere shortening---------------------------------------------------------------------------31 4.4 Future perspective--------------------------------------------------------------------------------------32 Conclusion--------------------------------------------------------------------------------------------------34 Figures and Tables------------------------------------------------------------------------------------------35 Supplementary Figures---------------------------------------------------------------------------------------54 S1. Generation of middle entry clone: pME-tert--------------------------------------------------------------54 S2. Using site-directed mutagenesis to change the mutated nucleotides---------------------------------------63 S3. Generation of expression construct pTol2-lfabp-tert-cmlc2-GFP-------------------------------------------64 References--------------------------------------------------------------------------------------------------71

    Akiyama, M., Hideshima, T., Hayashi, T., Tai, Y.T., Mitsiades, C.S., Mitsiades, N., Chauhan, D., Richardson, P., Munshi, N.C., and Anderson, K.C. (2003). Nuclear factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res 63, 18-21.
    Amati, B., Brooks, M.W., Levy, N., Littlewood, T.D., Evan, G.I., and Land, H. (1993). Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233-245.
    Anchelin, M., Alcaraz-Pérez, F., Martínez, C.M., Bernabé-García, M., Mulero, V., and Cayuela, M.L. (2013). Premature aging in telomerase-deficient zebrafish. Disease models & mechanisms 6, 1101-1112.
    Anchelin, M., Murcia, L., Alcaraz-Pérez, F., García-Navarro, E.M., and Cayuela, M.L. (2011). Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PloS one 6, e16955.
    Aziz, K., Limzerwala, J.F., Sturmlechner, I., Hurley, E., Zhang, C., Jeganathan, K.B., Nelson, G., Bronk, S., Fierro Velasco, R.O., van Deursen, E.J., et al. (2019). Ccne1 Overexpression Causes Chromosome Instability in Liver Cells and Liver Tumor Development in Mice. Gastroenterology 157, 210-226 e212.
    Blasco, M.A. (2005). Telomeres and human disease: ageing, cancer and beyond. Nature Reviews Genetics 6, 611-622.
    Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.-P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998). Extension of life-span by introduction of telomerase into normal human cells. science 279, 349-352.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68, 394-424.
    Chang, M.H., Chen, C.J., Lai, M.S., Hsu, H.M., Wu, T.C., Kong, M.S., Liang, D.C., Shau, W.Y., and Chen, D.S. (1997). Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med 336, 1855-1859.
    Chin, L., Artandi, S.E., Shen, Q., Tam, A., Lee, S.-L., Gottlieb, G.J., Greider, C.W., and DePinho, R.A. (1999). p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527-538.
    Chiodi, I., and Mondello, C. (2012). Telomere-independent functions of telomerase in nuclei, cytoplasm, and mitochondria. Frontiers in oncology 2, 133.
    Chou, Y.-T., Chen, L.-Y., Tsai, S.-L., Tu, H.-C., Lu, J.-W., Ciou, S.-C., Wang, H.-D., and Yuh, C.-H. (2019). Ribose-5-phosphate isomerase A overexpression promotes liver cancer development in transgenic zebrafish via activation of ERK and β-catenin pathways. Carcinogenesis 40, 461-473.
    Chou, Y.T., Jiang, J.K., Yang, M.H., Lu, J.W., Lin, H.K., Wang, H.D., and Yuh, C.H. (2018). Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating beta-catenin via a novel C-terminal domain. PLoS Biol 16, e2003714.
    Cong, Y.-S., Wen, J., and Bacchetti, S. (1999). The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Human molecular genetics 8, 137-142.
    Dang, M., Fogley, R., and Zon, L. (2016). Cancer and zebrafish: mechanisms, techniques, and models: chemical genetics. Advances in experimental medicine and biology 916, 103.
    Dasgupta, P., Henshaw, C., Youlden, D.R., Clark, P.J., Aitken, J.F., and Baade, P.D. (2020). Global Trends in Incidence Rates of Primary Adult Liver Cancers: A Systematic Review and Meta-Analysis. Frontiers in Oncology 10.
    de Oliveira, S., Houseright, R.A., Graves, A.L., Golenberg, N., Korte, B.G., Miskolci, V., and Huttenlocher, A. (2019). Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. Journal of hepatology 70, 710-721.
    Ding, D., Xi, P., Zhou, J., Wang, M., and Cong, Y.-S. (2013a). Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. The FASEB Journal 27, 4375-4383.
    Ding, D., Xi, P., Zhou, J., Wang, M., and Cong, Y.S. (2013b). Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-kappaB-dependent transcription. FASEB J 27, 4375-4383.
    Diril, M.K., Ratnacaram, C.K., Padmakumar, V.C., Du, T., Wasser, M., Coppola, V., Tessarollo, L., and Kaldis, P. (2012). Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A 109, 3826-3831.
    El-Mazny, A., Sayed, M., and Sharaf, S. (2014). Human telomerase reverse transcriptase messenger RNA (TERT mRNA) as a tumour marker for early detection of hepatocellular carcinoma. Arab J Gastroenterol 15, 68-71.
    Farazi, P.A., and DePinho, R.A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer 6, 674-687.
    Ferber, M.J., Montoya, D.P., Yu, C., Aderca, I., McGee, A., Thorland, E.C., Nagorney, D.M., Gostout, B.S., Burgart, L.J., Boix, L., et al. (2003). Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene 22, 3813-3820.
    Ghosh, A., Saginc, G., Leow, S.C., Khattar, E., Shin, E.M., Yan, T.D., Wong, M., Zhang, Z., Li, G., Sung, W.K., et al. (2012). Telomerase directly regulates NF-kappaB-dependent transcription. Nat Cell Biol 14, 1270-1281.
    Goessling, W., and Sadler, K.C. (2015). Zebrafish: an important tool for liver disease research. Gastroenterology 149, 1361-1377.
    Gonzalez-Suarez, E., Geserick, C., Flores, J.M., and Blasco, M.A. (2005). Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene 24, 2256-2270.
    González-Suárez, E., Flores, J.M., and Blasco, M.A. (2002). Cooperation between p53 mutation and high telomerase transgenic expression in spontaneous cancer development. Molecular and cellular biology 22, 7291-7301.
    Gouas, D.A., Shi, H., Hautefeuille, A.H., Ortiz-Cuaran, S.L., Legros, P.C., Szymanska, K.J., Galy, O., Egevad, L.A., Abedi-Ardekani, B., Wiman, K.G., et al. (2010). Effects of the TP53 p.R249S mutant on proliferation and clonogenic properties in human hepatocellular carcinoma cell lines: interaction with hepatitis B virus X protein. Carcinogenesis 31, 1475-1482.
    Greenberg, R.A., O'Hagan, R.C., Deng, H., Xiao, Q., Hann, S.R., Adams, R.R., Lichtsteiner, S., Chin, L., Morin, G.B., and DePinho, R.A. (1999). Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18, 1219-1226.
    Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. cell 144, 646-674.
    Hanse, E.A., Nelsen, C.J., Goggin, M.M., Anttila, C.K., Mullany, L.K., Berthet, C., Kaldis, P., Crary, G.S., Kuriyama, R., and Albrecht, J.H. (2009). Cdk2 plays a critical role in hepatocyte cell cycle progression and survival in the setting of cyclin D1 expression in vivo. Cell Cycle 8, 2802-2809.
    Henriques, C.M., Carneiro, M.C., Tenente, I.M., Jacinto, A., and Ferreira, M.G. (2013). Telomerase is required for zebrafish lifespan. PLoS genet 9, e1003214.
    Herrero, A.B., Rojas, E.A., Misiewicz-Krzeminska, I., Krzeminski, P., and Gutierrez, N.C. (2016). Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. Int J Mol Sci 17.
    Imamura, S., Uchiyama, J., Koshimizu, E., Hanai, J.-i., Raftopoulou, C., Murphey, R.D., Bayliss, P.E., Imai, Y., Burns, C.E., and Masutomi, K. (2008). A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PloS one 3, e3364.
    Ingle, P.V., Samsudin, S.Z., Chan, P.Q., Ng, M.K., Heng, L.X., Yap, S.C., Chai, A.S., and Wong, A.S. (2016). Development and novel therapeutics in hepatocellular carcinoma: a review. Ther Clin Risk Manag 12, 445-455.
    Jafri, W., and Kamran, M. (2019). Hepatocellular Carcinoma in Asia: A Challenging Situation. Euroasian Journal of Hepato-Gastroenterology 9, 27-33.
    Jin, X., Beck, S., Sohn, Y.-W., Kim, J.-K., Kim, S.-H., Yin, J., Pian, X., Kim, S.-C., Choi, Y.-J., and Kim, H. (2010). Human telomerase catalytic subunit (hTERT) suppresses p53-mediated anti-apoptotic response via induction of basic fibroblast growth factor. Experimental & molecular medicine 42, 574-582.
    Kanaya, T., Kyo, S., Hamada, K., Takakura, M., Kitagawa, Y., Harada, H., and Inoue, M. (2000). Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clinical cancer research 6, 1239-1247.
    Kanwal, F., Kramer, J., Asch, S.M., Chayanupatkul, M., Cao, Y., and El-Serag, H.B. (2017). Risk of Hepatocellular Cancer in HCV Patients Treated With Direct-Acting Antiviral Agents. Gastroenterology 153, 996-1005 e1001.
    Karaman, B., Battal, B., Sari, S., and Verim, S. (2014). Hepatocellular carcinoma review: Current treatment, and evidence-based medicine. World Journal of Gastroenterology: WJG 20, 18059.
    Khalaf, A.M., Fuentes, D., Morshid, A.I., Burke, M.R., Kaseb, A.O., Hassan, M., Hazle, J.D., and Elsayes, K.M. (2018). Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. Journal of hepatocellular carcinoma 5, 61.
    Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.d.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015.
    Koh, C.M., Khattar, E., Leow, S.C., Liu, C.Y., Muller, J., Ang, W.X., Li, Y., Franzoso, G., Li, S., and Guccione, E. (2015). Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. The Journal of clinical investigation 125, 2109-2122.
    Lai, J.G., Tsai, S.M., Tu, H.C., Chen, W.C., Kou, F.J., Lu, J.W., Wang, H.D., Huang, C.L., and Yuh, C.H. (2014). Zebrafish WNK lysine deficient protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling. PLoS One 9, e106129.
    Lau, B.W.-M., Wong, A.O.-L., Tsao, G.S.-W., So, K.-F., and Yip, H.K.-F. (2008). Molecular cloning and characterization of the zebrafish (Danio rerio) telomerase catalytic subunit (telomerase reverse transcriptase, TERT). Journal of Molecular Neuroscience 34, 63-75.
    Lee, D.D., Leão, R., Komosa, M., Gallo, M., Zhang, C.H., Lipman, T., Remke, M., Heidari, A., Nunes, N.M., and Apolónio, J.D. (2019). DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. The Journal of clinical investigation 129, 223-229.
    Lee, J.-S. (2015). The mutational landscape of hepatocellular carcinoma. Clinical and molecular hepatology 21, 220.
    Lemoine, M., and Thursz, M.R. (2017). Battlefield against hepatitis B infection and HCC in Africa. J Hepatol 66, 645-654.
    Lex, K., Gil, M.M., Lopes-Bastos, B., Figueira, M., Marzullo, M., Giannetti, K., Carvalho, T., and Ferreira, M.G. (2020). Telomere shortening produces an inflammatory environment that increases tumor incidence in zebrafish. Proceedings of the National Academy of Sciences.
    Li, Y., and Tergaonkar, V. (2014). Noncanonical functions of telomerase: implications in telomerase-targeted cancer therapies. Cancer research 74, 1639-1644.
    Lin, H.S., Huang, Y.L., Wang, Y.S., Hsiao, E., Hsu, T.A., Shiao, H.Y., Jiaang, W.T., Sampurna, B.P., Lin, K.H., Wu, M.S., et al. (2019). Identification of Novel Anti-Liver Cancer Small Molecules with Better Therapeutic Index than Sorafenib via Zebrafish Drug Screening Platform. Cancers (Basel) 11.
    Llovet, J.M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.-F., De Oliveira, A.C., Santoro, A., Raoul, J.-L., and Forner, A. (2008). Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine 359, 378-390.
    Llovet, J.M., Villanueva, A., Lachenmayer, A., and Finn, R.S. (2015). Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nature reviews Clinical oncology 12, 408.
    Lu, J.-W., Ho, Y.-J., Yang, Y.-J., Liao, H.-A., Ciou, S.-C., Lin, L.-I., and Ou, D.-L. (2015). Zebrafish as a disease model for studying human hepatocellular carcinoma. World journal of gastroenterology 21, 12042.
    Lu, J.W., Hsia, Y., Yang, W.Y., Lin, Y.I., Li, C.C., Tsai, T.F., Chang, K.W., Shieh, G.S., Tsai, S.F., Wang, H.D., et al. (2012). Identification of the common regulators for hepatocellular carcinoma induced by hepatitis B virus X antigen in a mouse model. Carcinogenesis 33, 209-219.
    Lu, J.W., Liao, C.Y., Yang, W.Y., Lin, Y.M., Jin, S.L., Wang, H.D., and Yuh, C.H. (2014). Overexpression of endothelin 1 triggers hepatocarcinogenesis in zebrafish and promotes cell proliferation and migration through the AKT pathway. PLoS One 9, e85318.
    Lu, J.W., Yang, W.Y., Tsai, S.M., Lin, Y.M., Chang, P.H., Chen, J.R., Wang, H.D., Wu, J.L., Jin, S.L., and Yuh, C.H. (2013). Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PLoS One 8, e76951.
    Luedde, T., and Schwabe, R.F. (2011). NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nature reviews Gastroenterology & hepatology 8, 108-118.
    Ma, Z.-X., Yang, C.-M., Li, M.-G., and Tu, H. (2019). Telomerase reverse transcriptase promoter mutations in hepatocellular carcinogenesis. cancer 25, 28-37.
    Marengo, A., Rosso, C., and Bugianesi, E. (2016). Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annu Rev Med 67, 103-117.
    Nagao, K., Tomimatsu, M., Endo, H., Hisatomi, H., and Hikiji, K. (1999). Telomerase reverse transcriptase mRNA expression and telomerase activity in hepatocellular carcinoma. J Gastroenterol 34, 83-87.
    Nishikawa, H., and Osaki, Y. (2013). Non-B, non-C hepatocellular carcinoma (Review). Int J Oncol 43, 1333-1342.
    Nugent, C.I., and Lundblad, V. (1998). The telomerase reverse transcriptase: components and regulation. Genes Dev 12, 1073-1085.
    Park, J.-I., Venteicher, A.S., Hong, J.Y., Choi, J., Jun, S., Shkreli, M., Chang, W., Meng, Z., Cheung, P., and Ji, H. (2009). Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460, 66-72.
    Rudolph, K.L., Chang, S., Lee, H.-W., Blasco, M., Gottlieb, G.J., Greider, C., and DePinho, R.A. (1999). Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701-712.
    Schulze, K., Nault, J.C., and Villanueva, A. (2016). Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol 65, 1031-1042.
    Shay, J.W., and Wright, W.E. (2019). Telomeres and telomerase: three decades of progress. Nature Reviews Genetics 20, 299-309.
    Sie, Z.-L., Li, R.-Y., Sampurna, B.P., Hsu, P.-J., Liu, S.-C., Wang, H.-D., Huang, C.-L., and Yuh, C.-H. (2020). WNK1 kinase stimulates angiogenesis to promote tumor growth and metastasis. Cancers 12, 575.
    Sonntag, R., Giebeler, N., Nevzorova, Y.A., Bangen, J.M., Fahrenkamp, D., Lambertz, D., Haas, U., Hu, W., Gassler, N., Cubero, F.J., et al. (2018). Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma. Proc Natl Acad Sci U S A 115, 9282-9287.
    Su, Z.L., Su, C.W., Huang, Y.L., Yang, W.Y., Sampurna, B.P., Ouchi, T., Lee, K.L., Wu, C.S., Wang, H.D., and Yuh, C.H. (2019). A Novel AURKA Mutant-Induced Early-Onset Severe Hepatocarcinogenesis Greater than Wild-Type via Activating Different Pathways in Zebrafish. Cancers (Basel) 11.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell 131, 861-872.
    Takakura, M., Kyo, S., Kanaya, T., Hirano, H., Takeda, J., Yutsudo, M., and Inoue, M. (1999). Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer research 59, 551-557.
    Tu, H.C., Hsiao, Y.C., Yang, W.Y., Tsai, S.L., Lin, H.K., Liao, C.Y., Lu, J.W., Chou, Y.T., Wang, H.D., and Yuh, C.H. (2017). Up-regulation of golgi alpha-mannosidase IA and down-regulation of golgi alpha-mannosidase IC activates unfolded protein response during hepatocarcinogenesis. Hepatol Commun 1, 230-247.
    Villanueva, A. (2019). Hepatocellular Carcinoma. N Engl J Med 380, 1450-1462.
    Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., and Kinzler, K.W. (2013). Cancer genome landscapes. science 339, 1546-1558.
    Walz, S., Lorenzin, F., Morton, J., Wiese, K.E., von Eyss, B., Herold, S., Rycak, L., Dumay-Odelot, H., Karim, S., and Bartkuhn, M. (2014). Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511, 483-487.
    White, R., Rose, K., and Zon, L. (2013). Zebrafish cancer: the state of the art and the path forward. Nature reviews Cancer 13, 624-636.
    Wrighton, P.J., Oderberg, I.M., and Goessling, W. (2019). There is something fishy about liver cancer: zebrafish models of hepatocellular carcinoma. Cellular and molecular gastroenterology and hepatology 8, 347.
    Wu, S.Y., Yang, W.Y., Cheng, C.C., Hsiao, M.C., Tsai, S.L., Lin, H.K., Lin, K.H., and Yuh, C.H. (2020). Low Molecular Weight Fucoidan Prevents Radiation-Induced Fibrosis and Secondary Tumors in a Zebrafish Model. Cancers (Basel) 12.
    Wu, X.-q., Yang, Y., Li, W.-x., Cheng, Y.-h., Li, X.-f., Huang, C., Meng, X.-m., Wu, B.-m., Liu, X.-h., and Zhang, L. (2016). Telomerase reverse transcriptase acts in a feedback loop with NF-κB pathway to regulate macrophage polarization in alcoholic liver disease. Scientific reports 6, 18685.
    Yang, W.-Y., Rao, P.-S., Luo, Y.-C., Lin, H.-K., Huang, S.-H., Yang, J.-M., and Yuh, C.-H. (2019). Omics-based investigation of diet-induced obesity synergized with HBx, Src, and p53 mutation accelerating hepatocarcinogenesis in zebrafish model. Cancers 11, 1899.
    You, M.S., Jiang, Y.J., Yuh, C.H., Wang, C.M., Tang, C.H., Chuang, Y.J., Lin, B.H., Wu, J.L., and Hwang, S.P. (2016). A Sketch of the Taiwan Zebrafish Core Facility. Zebrafish 13 Suppl 1, S24-29.
    Yuan, X., Larsson, C., and Xu, D. (2019). Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene 38, 6172-6183.
    Yuan, X., and Xu, D. (2019). Telomerase Reverse Transcriptase (TERT) in Action: Cross-Talking with Epigenetics. Int J Mol Sci 20.
    Zucman-Rossi, J., Villanueva, A., Nault, J.-C., and Llovet, J.M. (2015). Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226-1239. e1224.
    Zuo, Q.-P., Liu, S.-K., Li, Z.-J., Li, B., Zhou, Y.-L., Guo, R., and Huang, L.-H. (2011). NF-kappaB p65 modulates the telomerase reverse transcriptase in the HepG2 hepatoma cell line. European journal of pharmacology 672, 113-120.

    QR CODE