簡易檢索 / 詳目顯示

研究生: 詹芸臻
Chan, Yun-Chen
論文名稱: 製備溫感型胺基酸水膠包覆聚乳酸甘醇酸微粒控制釋放生長因子作為關節軟骨修復之研究
Study of Growth Factor-loaded Microspheres in mPEG Polypeptide Hydrogel System for Articular Cartilage Repair
指導教授: 朱一民
Chu, I-Ming
口試委員: 蔡德豪
Tsai, De-Hao
林世傑
Lin, Shih-Jie
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 107
語文別: 英文
論文頁數: 60
中文關鍵詞: 溫度敏感型胺基酸高分子細胞支架聚乳酸甘醇酸微粒軟骨細胞緩慢釋放TGF-β3
外文關鍵詞: chondrocytes, methoxy poly(ethylene glycol)-poly(alanine), PLGA microspheres, tissue engineering, thermosensitive hydrogel, TGF-β3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 退化性膝關節炎(osteoarthritis)通常來自膝關節老化、運動損傷等因素,此種情形膝關節軟骨再生能力差,許多醫療團隊與研究者致力於膝關節修復的技術開發,目前有藥物注射、關節鏡手術、置換關節等方法,未來人們期望以侵入性最小的手術或組織工程技術達到膝關節再生的最大效益。
    本研究探討可注射溫度敏感型胺基酸高分子水膠添加聚乳酸甘醇酸微粒包覆生長因子的緩釋模型,結合注射型載體與持續提供生長因子的優點,期望未來能應用至膝關節軟骨修復手術,當水膠承載生長因子載體與自體軟骨細胞(或幹細胞)時,注射至膝關節軟骨缺陷,可提升手術的便利性,同時有助於膝關節軟骨長期修復。此研究所使用溫度敏感型胺基酸高分子水膠(methoxy poly(ethylene glycol)-poly (alanine), mPA) 已有相關研究發表其對於軟骨細胞生長的助益,在體外培養實驗中,顯示軟骨細胞確實與此mPA水膠有良好的生物相容性,mPA水膠可模擬膝關節軟骨組織的生長環境,具有三維結構、高含水率、體內自發降解等特性,可作為優良的細胞載體。本研究在此mPA水膠中添加生長因子載體(TGF-β3-loaded PLGA microspheres),進行生長因子緩慢釋放行為的討論,在此模型中生長因子的釋放曲線可維持2個月以上,改善以mPA水膠包覆蛋白質而有第一天突然釋放的缺點;在體外細胞實驗中,軟骨細胞與生長因子載體同樣被包覆於mPA水膠中進行3周的培養,以即時聚合酶連鎖反應(real-time PCR)結果發現延長釋放生長因子對比鄰的軟骨細胞生長有助益,可避免軟骨細胞在長時間培養過程中朝向肥大、細胞凋亡的方向生長。
    期望有新穎的組織工程技術持續被提出,與醫學技術相輔相成,為大眾提供更多醫療的選擇。


    Co-cultured scaffolds for the cartilage repair have been widely developed for decades, but the diffusion of limitation of nutrients resulted in the poor cell proliferation and the lack of ECM production. Transforming growth factor beta (TGF-β) is a potent promoter for chondrogenesis and ECM formation. In this study, the aim is to develop a type of thermosensitive hydrogel matrix to encapsulate chondrocytes together with TGF-β3-loaded PLGA microspheres for cartilage repair. Methoxy poly(ethylene glycol)-poly (alanine), mPA, which is able to gel in situ under physiological temperature, is used to deliver cells to defect area by injection with minimum invasiveness. Poly (lactic-co-glycolic acid) (PLGA) microspheres were used for sustained release of growth factor TGF-β3. It was found that the release can be extended for over 2 months. This hydrogel plus microspheres composite system can be used to deliver cells with proper growth factors for long-term repair in an easy and effective manner.

    Abstract I Contents III List of Tables VI List of Figures VII Abbreviation IX Chapter 1. Introduction and Literature Review 1 1.1. Articular cartilage damage 2 1.2. Surgery 4 1.2.1. Arthroscopic surgery 4 1.2.2. Autologous chondrocyte implantation (ACI) 4 1.3. Articular cartilage tissue engineering 6 1.3.1. Hydrogels for articular cartilage repair 7 1.3.2. Cell strategies 8 1.3.3. Bioactive additives (biofactors) 9 1.4. Injectable hydrogels 11 1.4.1. Natural materials 12 1.4.2. Synthetic polymer 13 1.5. Thermosensitive injectable hydrogels 15 1.5.1. Poly(peptide)-based hydrogels 17 1.5.2. mPEG-poly(alanine) hydrogels 19 1.6. PLGA microspheres 20 1.7. Composite scaffolds for cartilage repair 23 1.8. Specific aims 24 Chapter 2. Materials and Methods 25 2.1. Flow chart of experiment 25 2.2. Materials 26 2.3. Equipment 28 2.4. Synthesis of the diblock copolymers 29 2.5. Characterization of diblock copolymers 31 2.6. Preparation and sol-gel transition of hydrogels 31 2.7. Degradation study of hydrogels 32 2.7.1 In vitro degradation study 32 2.7.2 In vivo degradation study 32 2.8. Fabrication of protein-loaded PLGA MS 33 2.9. In vitro cytotoxicity 35 2.10. In vitro protein release from hydrogel composite system 36 2.10.1. Release study of macromolecular proteins 36 2.10.2. Release study of chondrogenic growth factors, TGF-β3 37 2.11. Gene expression of encapsulated chondrocytes 38 Chapter 3. Results and Discussion 39 3.1. Characterization of diblock copolymers mPA 39 3.2. Sol-gel transition profile of mPA hydrogels 42 3.3. Morphology of hydrogels and PLGA MS 44 3.4. Degradation study of hydrogels 46 3.5. In vitro cytotoxicity 48 3.6. In vitro protein release from hydrogel composite system 49 3.7. Gene expression of encapsulated chondrocytes 51 Chapter 4. Conclusion 53 Future Work 54 Reference 55

    [1] R. J. Williams, L. Peterson, and B. J. Cole, Cartilage Repair Strategies. Humana Press, 2008.
    [2] B. J. Cole, and M. M. Malek, Articular Cartilage Lesions: A Practical Guide to Assessment and Treatment. Springer New York, 2013.
    [3] M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, S. Li, Y. Deng, and N. He, "Injectable hydrogels for cartilage and bone tissue engineering," Bone Research, Review Article vol. 5, p. 17014, 2017.
    [4] K. Mithoefer, R. J. Williams, R. F. Warren, T. L. Wickiewicz, and R. G. Marx, "High-Impact Athletics after Knee Articular Cartilage Repair:A Prospective Evaluation of the Microfracture Technique," The American Journal of Sports Medicine, vol. 34, no. 9, pp. 1413-1418, 2006.
    [5] R. F. Loeser, "Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix," Osteoarthritis and Cartilage, vol. 17, no. 8, pp. 971-979, 2009.
    [6] R. F. Loeser, S. R. Goldring, C. R. Scanzello, and M. B. Goldring, "Osteoarthritis: A disease of the joint as an organ," Arthritis & Rheumatism, vol. 64, no. 6, pp. 1697-1707, 2012.
    [7] E. B. Hunziker, "Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects," Osteoarthritis and Cartilage, vol. 10, no. 6, pp. 432-463, 2002.
    [8] D. Correa, and S. A. Lietman, "Articular cartilage repair: Current needs, methods and research directions," Seminars in Cell & Developmental Biology, vol. 62, pp. 67-77, 2017.
    [9] J. Martel-Pelletier, A. J. Barr, F. M. Cicuttini, P. G. Conaghan, C. Cooper, M. B. Goldring, S. R. Goldring, G. Jones, A. J. Teichtahl, and J-P. Pelletier, "Osteoarthritis," Nature Reviews Disease Primers, Primer vol. 2, p. 16072, 2016.
    [10] S. R. Lyu, C. C. Hsu, and C. W. Lin, "Arthroscopic cartilage regeneration facilitating procedure for osteoarthritic knee," BMC Musculoskeletal Disorders, vol. 13, no. 1, p. 226, November 21 2012.
    [11] J. D. Harris, R. A. Siston, R. H. Brophy, C. Lattermann, J. L. Carey, and D. C. Flanigan, "Failures, re-operations, and complications after autologous chondrocyte implantation – a systematic review," Osteoarthritis and Cartilage, vol. 19, no. 7, pp. 779-791, 2011.
    [12] M. F. Pietschmann, T. R. Niethammer, A. Horng, M. F. Gülecyüz, I. Feist-Pagenstert, V. Jansson, and P. E. Müller, "The Incidence and Clinical Relevance of Graft Hypertrophy After Matrix-Based Autologous Chondrocyte Implantation," The American Journal of Sports Medicine, vol. 40, no. 1, pp. 68-74, 2012.
    [13] M. R. Steinwachs, L. Engebretsen, and R. H. Brophy, "Scientific Evidence Base for Cartilage Injury and Repair in the Athlete," Cartilage, vol. 3, no. 1 Suppl, pp. 11S-17S, 2012.
    [14] S. Camarero-Espinosa, B. Rothen-Rutishauser, E. J. Foster, and C. Weder, "Articular cartilage: from formation to tissue engineering," Biomaterials Science, vol. 4, no. 5, pp. 734-767, 2016.
    [15] A. R. Armiento, M. J. Stoddart, M. Alini, and D. Eglin, "Biomaterials for articular cartilage tissue engineering: Learning from biology," Acta Biomaterialia, vol. 65, pp. 1-20, 2018.
    [16] M. Dai, B. Sui, Y. Xue, X. Liu, and J. Sun, "Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes," Biomaterials, vol. 180, pp. 91-103, 2018/10/01/ 2018.
    [17] A. N. Renth, and M. S. Detamore, "Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine," Tissue Engineering Part B: Reviews, vol. 18, no. 5, pp. 341-362, 2012.
    [18] Y. Deng, A. X. Sun, K. J. Overholt, G. Z. Yu, M. R. Fritch, P. G. Alexander, H. Shen, R. S. Tuan, and H. Lin, "Enhancing chondrogenesis and mechanical strength retention in physiologically relevant hydrogels with incorporation of hyaluronic acid and direct loading of TGF-β," Acta Biomaterialia, vol. 83, pp. 167-176, 2019.
    [19] T. S. de Windt, L. A. Vonk, I. C. M. Slaper-Corntenbach, M. P. H. van den Broek, R. Nizak, M. H. P. van Rijen, R. A. de Weger, W. J. A. Dhert, and D. B. F. Saris, "Allogeneic Mesenchymal Stem Cells Stimulate Cartilage Regeneration and Are Safe for Single-Stage Cartilage Repair in Humans upon Mixture with Recycled Autologous Chondrons," Stem Cells, vol. 35, no. 1, pp. 256-264, 2017.
    [20] J. D. Green, V. Tollemar, M. Dougherty, Z. Yan, L. Yin, J. Ye, Z. Collier, M. K. Mohammed, R. C. Haydon, H. H. Luu, R. Kang, M. J. Lee, S. H. Ho, T-C He, L. L. Shi, and A. Athiviraham, "Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering," Genes & Diseases, vol. 2, no. 4, pp. 307-327, 2015.
    [21] S. M. Richardson, G. Kalamegam, P. N. Pushparaj, C. Matta, A. Memic, A. Khademhosseini, R. Mobasheri, F. L. Poletti, J. A. Hoyland, and A. Mobasheri, "Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration," Methods, vol. 99, pp. 69-80, 2016.
    [22] H. Tan, and K. G. Marra, "Injectable, Biodegradable Hydrogels for Tissue Engineering Applications," Materials, vol. 3, no. 3, pp. 1746-1767, 2010.
    [23] J. Liao, B. Wang, Y. Huang, Y. Qu, J. Peng, and Z. Qian, "Injectable Alginate Hydrogel Cross-Linked by Calcium Gluconate-Loaded Porous Microspheres for Cartilage Tissue Engineering," ACS Omega, vol. 2, no. 2, pp. 443-454, 2017.
    [24] M. Fan, Y. Ma, H. Tan, Y. Jia, S. Zou, S. Guo, M. Zhao, H. Huang, Z. Ling, Y. Chen, and X. Hu, "Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering," Materials Science and Engineering: C, vol. 71, pp. 67-74, 2017.
    [25] W. S. Shim, J.-H. Kim, H. Park, K. Kim, I. Chan Kwon, and D. S. Lee, "Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer," Biomaterials, vol. 27, no. 30, pp. 5178-5185, 2006.
    [26] Y. Zhang, J. Ding, D. Sun, H. Sun, X. Zhuang, F. Chang, J. Wang, and X. Chen, "Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy," Materials Science and Engineering: C, vol. 49, pp. 262-268, 2015.
    [27] B. G. Choi, M. H. Park, S.-H. Cho, M. K. Joo, H. J. Oh, E. H. Kim, K. Park, D. K. Han, and B. Jeong, "Thermal gelling polyalanine-poloxamine-polyalanine aqueous solution for chondrocytes 3D culture: Initial concentration effect," Soft Matter, vol. 7, no. 2, pp. 456-462, 2011.
    [28] S. Peng, H.-X. Liu, C.-Y. Ko, S.-R. Yang, W.-L. Hung, and I.-M. Chu, "A hydrolytically-tunable photocrosslinked PLA-PEG-PLA/PCL-PEG-PCL dual-component hydrogel that enhances matrix deposition of encapsulated chondrocytes," J Tissue Eng Regen Med vol. 11, no. 3, pp. 669-678, 2017.
    [29] T. Zhou, X. Li, G. Li, T. Tian, S. Lin, S. Shi, J. Liao, X. Cai, and Y. Lin, "Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair," Scientific Reports, vol. 7, no. 1, p. 10553, 2017.
    [30] L. Yu, G. Chang, H. Zhang, and J. Ding, "Temperature-induced spontaneous sol–gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water," Journal of Polymer Science Part A: Polymer Chemistry, vol. 45, no. 6, pp. 1122-1133, 2007/03/15 2007.
    [31] C. Gong, S. Shi, P.-W. Dong, B. Kan, M. Gou, X.-H. Wang, X.-Y. Li, F. Luo, X. Zhao, Y.-Q. Wei, and Z.-Y. Qian , "Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel," International Journal of Pharmaceutics, vol. 365, no. 1, pp. 89-99, 2009.
    [32] Y. Jeong, M. K. Joo, K. H. Bahk, Y. Y. Choi, H. T. Kim, W. K. Kim, H. Jeong Lee, Y. S. Sohn, B. Jeong, "Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial," Journal of Controlled Release, vol. 137, no. 1, pp. 25-30, 2009.
    [33] S. Peng, C. W. Wu, J. Y. Lin, C. Y. Yang, M. H. Cheng, and I. M. Chu, "Promoting chondrocyte cell clustering through tuning of a poly(ethylene glycol)-poly(peptide) thermosensitive hydrogel with distinctive microarchitecture," Mater Sci Eng C Mater Biol Appl, vol. 76, pp. 181-189, Jul 1 2017.
    [34] L. Yu, G. Chang, H. Zhang, and J. Ding, "Temperature-induced spontaneous sol–gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water," J Polym Sci Part A: Polym Chem, vol. 45, no. 6, pp. 1122-1133, 2007.
    [35] U. P. Shinde, H. J. Moon, D. Y. Ko, B. K. Jung, and B. Jeong, "Control of rhGH Release Profile from PEG–PAF Thermogel," Biomacromolecules, vol. 16, no. 5, pp. 1461-1469, 2015.
    [36] H. J. Oh, M. K. Joo, Y. S. Sohn, and B. Jeong, "Secondary Structure Effect of Polypeptide on Reverse Thermal Gelation and Degradation of l/dl-Poly(alanine)–Poloxamer–l/dl-Poly(alanine) Copolymers," Macromolecules, vol. 41, no. 21, pp. 8204-8209, 2008.
    [37] M. Morille, K. Toupet, C. N. Montero-Menei, C. Jorgensen, and D. Noël, "PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis," Biomaterials, vol. 88, pp. 60-69, 2016.
    [38] M. Morille, T. Van-Thanh, X. Garric, J. Cayon, J. Coudane, D. Noël, M.-C. Venier-Julienne, and C. N. Montero-Menei, "New PLGA–P188–PLGA matrix enhances TGF-β3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells," Journal of Controlled Release, vol. 170, no. 1, pp. 99-110, 2013.
    [39] N. Mohan, N. H. Dormer, K. L. Caldwell, V. H. Key, C. J. Berkland, and M. S. Detamore, "Continuous Gradients of Material Composition and Growth Factors for Effective Regeneration of the Osteochondral Interface," Tissue Engineering Part A, vol. 17, no. 21-22, pp. 2845-2855, 2011.
    [40] A. Jaklenec, A. Hinckfuss, B. Bilgen, D. M. Ciombor, R. Aaron, and E. Mathiowitz, "Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds," Biomaterials, vol. 29, no. 10, pp. 1518-1525, 2008.
    [41] K. Whang, T. K. Goldstick, and K. E. Healy, "A biodegradable polymer scaffold for delivery of osteotropic factors," Biomaterials, vol. 21, no. 24, pp. 2545-2551, 2000.
    [42] C. J. Beverung, C. J. Radke, and H. W. Blanch, "Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements," Biophysical Chemistry, vol. 81, no. 1, pp. 59-80, 1999.
    [43] J. Wang, Q. Yang, N. Cheng, X. Tao, Z. Zhang, A. Sun, and Q. Zhang, "Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair," Materials Science and Engineering: C, vol. 61, pp. 705-711, 2016.
    [44] C. Albrecht, B. Tichy, S. Nürnberger, S. Hosiner, L. Zak, S. Aldrian, and S. Marlovits, "Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study," Osteoarthritis and Cartilage, vol. 19, no. 10, pp. 1219-1227, 2011.
    [45] K. E. Yates, F. Allemann, and J. Glowacki, "Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes," (in eng), Cell and tissue banking, vol. 6, no. 1, pp. 45-54, 2005.
    [46] F. T. Xu, H. M. Li, C. Y. Zhao, Z. J. Liang, M. H. Huang, Q. Li, Y. C. Chen, and G. Y. Chi, "Characterization of Chondrogenic Gene Expression and Cartilage Phenotype Differentiation in Human Breast Adipose-Derived Stem Cells Promoted by Ginsenoside Rg1 In Vitro" Cellular Physiology and Biochemistry, vol. 37, no. 5, pp. 1890-1902, 2015.
    [47] G. Zhang, Jianbiao, Y. Li, and Y. Wang, "Synthesis and characterization of poly(L-alanine)-block-poly(ethylene glycol) monomethyl ether as amphiphilic biodegradable co-polymers," Journal of Biomaterials Science, Polymer Edition, vol. 14, no. 12, pp. 1389-1400, 2003.
    [48] Y. Y. Choi, M. K. Joo, Y. S. Sohn, and B. Jeong, "Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers," Soft Matter, vol. 4, no. 12, pp. 2383-2387, 2008.
    [49] J. Lam, S. Lu, F. K. Kasper, and A. G. Mikos, "Strategies for controlled delivery of biologics for cartilage repair," Advanced Drug Delivery Reviews, vol. 84, pp. 123-134, 2015.
    [50] J. Crecente-Campo, E. Borrajo, A. Vidal, and M. Garcia-Fuentes, "New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation," European Journal of Pharmaceutics and Biopharmaceutics, vol. 114, pp. 69-78, 2017.

    QR CODE