簡易檢索 / 詳目顯示

研究生: 簡慧姍
Jian, Hui Shan
論文名稱: 利用鐵離子佈植方法製備磁性奈米鑽石粒子
Fabrication of magnetic nanodiamond particles using Fe ion implantation
指導教授: 周文采
Chou, Wen Tsae
口試委員: 牛寰
Niu, Huan
陳芳馨
Chen, Fang Hsin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 43
中文關鍵詞: 奈米鑽石奈米材料離子佈植鐵離子磁性
外文關鍵詞: nanodiamond, nanomaterial, ion implantation, Fe ion, magnetism
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的研究目的是利用鐵離子佈植方法製備磁性奈米鑽石。現今奈米材料有許多在醫療診斷和癌症治療上之研究,奈米材料的生物相容性和生物毒性是影響奈米材料於生醫應用之限制因素。因此,找出一種能夠解決目前奈米材料在生物醫學應用上所面臨的問題,是有其必要性及迫切性。

    本研究使用的奈米材料為Ib型無生物毒性的奈米鑽石,鐵離子佈植的劑量分別是1×1015 ions/cm2, 3×1015 ions/cm2, 5×1015 ions/cm2 。在鐵離子佈植的過程中,鑽石的晶格結構可能會遭到破壞,為了確保經過鐵離子佈植的奈米鑽石仍具完整鑽石結構,所以對鐵離子佈植後的奈米鑽石進行熱處理,退火的溫度條件為800 ℃ 和 600 ℃,拉曼光譜結果顯示退火後的奈米鑽石,石墨的G-band消失且鑽石峰值強度增強。進一步,對含鐵奈米鑽石進行物理性質鑑定,透過高解析度穿透式電子顯微鏡,可看見磁性奈米鑽石擁有完整鑽石單晶結構;由X光能量分散光譜可以檢視材料元素成分,最後使用超導量子干涉震動磁量儀測量含鐵奈米的磁化曲線,從結果為磁滯曲線,可以說明含鐵奈米鑽石屬於鐵磁性。

    最終結果顯示含鐵奈米鑽石的表面結構仍然完整且與奈米鑽石一致,此外還具有磁性,所以理論上,本研究所製備出的磁性奈米鑽石也是不具生物毒性和具良好生物相容性。


    The purpose of this study was to fabricate magnetic nanodiamonds (NDs) using Fe ion implantation. Nanomaterials are being applied to medical diagnosis study and cancer therapy study. Biocompatibility and biological toxicity have been limiting factors as regarding medical application. Thus it would be desirable to find a new method which can resolve these problems.

    The NDs, a promising non-toxic material, used in this study was type Ib. They were implanted using 72 keV Fe ions at three different dosage. The process of ion implantation probably damages the crystal lattice of NDs. In order to keep completely crystal lattice of Fe ion doped NDs, this study used thermal annealing process at 800 ℃ and 600 ℃. The Raman spectrum showed that annealing process truly recovered the crystal lattice of NDs. The G-band of graphite disappeared and the intensity of diamond peak increased after annealing. The microstructure of Fe ion doped NDs were examined by High Resolution Transmission Electron Microscopy (HRTEM) and these images demonstrated that no defects were found in Fe ion doped NDs. Further, the content of elements in Fe doped NDs can be identified by Energy dispersive X-ray Spectroscopy (EDX) and the quantification of magnetic force can be measured by Superconducting Quantum Interference Device Vibrating Sample Magnetometer (SQUID VSM). The hysteresis loop indicated that this study successfully produced ferromagnetic NDs.

    The totally final results displayed Fe doped NDs possess same crystal lattice as NDs and magnetism. Theoretically, these magnetic NDs are also a promising non-toxic and good biocompatibility material.

    摘要 I Abstract II 謝誌 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 奈米材料 1 1.1.1 奈米材料定義 1 1.1.2 奈米材料之性質與應用 1 1.1.3 奈米材料於生醫應用之限制 2 1.2 磁性奈米材料 4 1.2.1 基本磁學[8] 4 1.2.2 磁性奈米材料簡介 8 1.2.3 常見磁性奈米材料製備方法 9 1.2.4 磁性奈米材料於生醫之應用 10 1.3 奈米鑽石 10 1.3.1 鑽石基本結構 10 1.3.2 奈米鑽石基本特性 12 1.4 離子佈植摻雜基本原理 14 1.5 研究動機與目的 18 第二章 實驗材料與方法 19 2.1 實驗架構 19 2.2 實驗樣品製備 21 2.2.1 奈米鑽石樣品製備步驟 21 2.2.2 鐵離子佈植 22 2.2.3 退火 (annealing) 23 2.2.4 超音波振盪樣品 23 2.2.5 磁性奈米鑽石樣品篩選方法 24 2.3 磁性奈米鑽石特性鑑定 27 2.3.1 拉曼光譜 [19] 27 2.3.2 高解析度穿透式電子顯微鏡影像 29 2.3.3 超導量子干涉震動磁量儀之磁性量測 31 第三章 實驗結果與討論 33 3.1 磁性奈米鑽石之結構鑑定 33 3.1.1 拉曼光譜 33 3.1.2 HRTEM影像 35 3.2 磁性奈米鑽石之元素分析 36 3.3 磁性奈米鑽石之磁性量測 37 第四章 結論 39 第五章 參考文獻 40 第六章 附錄 42

    1. Bhushan, B., Introduction to Nanotechnology: History, Status, and Importance of Nanoscience and Nanotechnology Education. 2016: p. 1-31.
    2. Yeh, Y.C., B. Creran, and V.M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012. 4(6): p. 1871-80.
    3. Huang, X., et al., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. 2007.
    4. Freitas Jr, R.A., Nanomedicine, Vol. IIA: Biocompatibility. Landes Bioscience, Georgetown, USA, 2003.
    5. Black, J., Biological performance of materials: fundamentals of biocompatibility. 2005: CRC Press.
    6. Michalet, X., et al., Quantum dots for live cells, in vivo imaging, and diagnostics. science, 2005. 307(5709): p. 538-544.
    7. Xu, X., et al., Cancer nanomedicine: from targeted delivery to combination therapy. Trends in molecular medicine, 2015. 21(4): p. 223-232.
    8. Griffiths, D.J., ed. Introduction to electrodynamics. 4 ed. 2012, Pearson. 266-291.
    9. Colombo, M., et al., Biological applications of magnetic nanoparticles. Chem Soc Rev, 2012. 41(11): p. 4306-34.
    10. Teja, A.S. and P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in crystal growth and characterization of materials, 2009. 55(1): p. 22-45.
    11. Huang, S.H., M.H. Liao, and D.H. Chen, Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnology Progress, 2003. 19(3): p. 1095-1100.
    12. Kim, J., et al., Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer‐targeted imaging and magnetically guided drug delivery. Advanced Materials, 2008. 20(3): p. 478-483.
    13. Kline, T.L., et al., Biocompatible high-moment FeCo-Au magnetic nanoparticles for magnetic hyperthermia treatment optimization. Journal of Magnetism and Magnetic Materials, 2009. 321(10): p. 1525-1528.
    14. Mochalin, V.N., et al., The properties and applications of nanodiamonds. Nat Nanotechnol, 2012. 7(1): p. 11-23.
    15. Schrand, A.M., et al., Are diamond nanoparticles cytotoxic? J Phys Chem B, 2007. 111(1): p. 2-7.
    16. 蔣曉白, 半導體積體電路生產技術 從摻雜技術—離子佈植(Ion Implantation)談起. NANO COMMUNICATION 2013. 20(4).
    17. Kerber, S. Negative Ion Beam Sources. 2007 April 17; Available from: http://www.pelletron.com/negion.htm.
    18. Ziegler, J.F., M.D. Ziegler, and J.P. Biersack, SRIM – The stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010. 268(11-12): p. 1818-1823.
    19. 張華, 汪., ed. 材料分析. 1 ed. 1998, 中國材料學會. 660-661.
    20. Haiso, K.W., magnetic and dielectric behavior of the quasi-two-dimensional triangular antiferro-magnet NiGa2S4+δ. National Sun Yat-sen university master thesis, 2011: p. 11-12.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE