研究生: |
鄭右壬 Cheng, Yu-Jen |
---|---|
論文名稱: |
基於整合型微流體平台偵測甲基化之游離DNA利用於卵巢癌之伴隨式診斷與預後監測 Detection of Methylated Cell-Free DNA for Companion Diagnosis and Prognosis of Ovarian Cancer on an Integrated Microfluidic System |
指導教授: |
李國賓
Lee, Gwo-Bin |
口試委員: |
陳致真
Chen, Chih-Chen 許耿福 Hsu, Keng-Fu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 甲基化 、抑癌基因 、游離DNA 、微流體 、渦旋混合 、液體活檢 |
外文關鍵詞: | methylation, tumor suppressor gene, cell-free DNA, microfluidics, vortex-mixing, liquid biopsy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
甲基化的游離DNA被視為是一種新穎的生物標記物,它提供了一種微創方法針對卵巢癌進行伴隨式診斷,藥物選擇和預後。但是,由於甲基化的游離DNA濃度極低、分析的耗時長且需要複雜的人為操作流程,因此直接在游離DNA中分析抑癌基因的甲基化程度仍然具有挑戰性。在這項研究中,展示了一個整合型的微流體平台使用接有甲基CpG結合蛋白的磁珠和微流控設備(如:微型幫浦、微型閥門、微型混合器和微型聚合酶連鎖反應平台),這些設備可以實現(1)血漿中甲基化游離DNA的捕獲並達到72%的抓取率和(2)定量分析抑癌基因之甲基化程度。檢測極限可達到0.2 pg/µL的甲基化游離DNA,比先前的研究低三個數量級。此外,可以實現0.2到2000 pg/µL甲基化游離DNA的身理濃度檢測範圍。整個檢測過程可在2小時內自動化完成,且僅需20 µL的血漿,證實此整合型微流體平台可使用液體活檢完成卵巢癌的藥物選擇和預後。
Methylated cell-free DNA (cfDNA) has been seen as one of promising indicators that provides a minimally invasive tool for companion diagnosis, prognosis and therapy selection of ovarian cancer. However, exploring the methylation profile of specific tumor suppressor genes in cfDNA remains challenging due to its random fragments of genes, extremely low concentration and complex labor-intensive processes. In this presented study, an integrated microfluidic system was developed to utilized microfluidic devices (such as microvalves, micropumps, micromixers and micro polymerase chain reactor) and magnetic beads coated with methyl CpG binding domain proteins (MBD) which could implement (1) capture of methylated cfDNA in plasma with 72% of capture rate and (2) quantify methylated tumor suppressor genes in isolated methylated cfDNA. The limit of detection could be as low as 0.2 pg/µL, which is three orders of magnitudes lower than the benchtop method. Furthermore, a dynamic range from 0.2 to 2000 pg/µL of methylated cfDNA could cover the physiological range of methylated cfDNA. The whole on-chip assay could be automated within 2 hr while only required 20 µL of plasma, showing great potential for using liquid biopsy to perform companion medicine (i.e. therapy selection) and prognosis of ovarian cancer.
1. J.A. Ludwig and J.N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nat. Rev. Cancer, vol. 5, pp. 845-856, 2005.
2. M. Esteller, “CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future,” Oncogene, vol. 21, pp. 5427–5440, 2002.
3. Q. Wu, R.A. Lothe, T. Ahlquist, I. Silins, C.G. Tropé, F. Micci, J.M. Nesland, Z. Suo and G.E. Lind, “DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets,” Mol. Cancer, vol. 6(45), pp. 1-11, 2007.
4. M.A. Earp and J.M. Cunningham, “DNA methylation changes in epithelial ovarian cancer histotypes,” Genomics, vol. 106, pp. 311-321, 2015.
5. C.A. Barton, N.F. Hacker, S.J. Clark and P.M. O’Brien, “DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment,” Gynecol Oncol., vol. 109, pp. 129-139, 2008.
6. O.A. Stefansson, J.G. Jonasson, O.T. Johannsson, K. Olafsdottir, M. Steinarsdottir, S. Valgeirsdottir and J.E. Eyfjord, “Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes,” Breast Cancer Res., vol. 11, pp. 1-14, 2009.
7. V.V. Levenson, “DNA methylation as a universal biomarker, ”Expert Rev. Mol. Diagn., vol. 10, pp. 481-488, 2010.
8. J.A. Ludwig and J.N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nat. Rev. Cancer, vol. 5, pp. 845-856, 2005.
9. T. Bonome, D.A. Levine, J. Shih, M. Randonovich, C.A.P. Masison, F. Bogomolniy, L. Ozbun, J. Brady, J.C. Barrett, J. Boyd and M.J. Birrer, “A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer,” Cancer Res., vol. 68, pp. 5478-5486, 2008.
10. C. Batch, T.H.M. Huang, R. Brown and K.P. Nephew, “The epigenetics of ovarian cancer drug resistance and resensitization,” Am. J. Obstet., vol. 191, pp. 1552-1572, 2004.
11. A.E. Teschendorff, U. Menon, A. Gentry-Maharaj, S.J. Ramus, S.A. Gayther, S. Apostolidou, A. Jones, M. Lechner, S. Beck, J.J. Jacobs and M. Widschwendter, “An epigenetic signature in peripheral blood predicts active ovarian cancer,” PLOS One, vol. 4, pp. 8274-8285, 2009.
12. D. Yang, S. Khan, Y. Sun, K. Hess, I. Shmulevich, A.K. Sood and W. Zhang, “Association between BRCA2 but not BRCA1 mutations and beneficial survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer,” JAMA, vol. 306, pp. 1557-1565, 2014.
13. J.A. Plumb, G. Strathdee, J. Sludden, S.B. Kaye and R. Brown, “Reversal of drug resistance in human tumor xenografts by 2-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter,” Cancer Res., vol. 60, pp. 6039-6044, 2000.
14. R.L. Baldwin, E. Nemeth, H. Tran, H. Shvartsman, I. Cass, S. Narod and B.Y. Karlan, “BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study,” Cancer Res, vol. 66, pp. 5329-5333, 2000.
15. G. Rigakos and E. Razis, “BRCAness: finding the Achilles heel in ovarian cancer,” Oncologist, vol. 17(7), pp. 956-962, 2012.
16. J.A. Ledermann, “PARP inhibitors in ovarian cancer,” Ann Oncol., vol. 27, pp. 40-44, 2016.
17. E. Aref-Eshghi, J.D. McGee, V.P. Pedro, J. Kerkhof, A. Stuart, P.J. Ainsworth, H.X. Lin, M. Volodarsky, C.M. McLachlin and B. Sadikovic, “Genetic and epigenetic profiling of BRCA1/2 in ovarian tumors reveals additive diagnostic yield and evidence of a genomic BRCA1/2 DNA methylation signature,” Genet., vol. 65, pp. 865-873, 2020.
18. O. Kondrashova, M. Topp, K. Nesic, E. Lieschke, G.Y. Ho, M.I. Harrell, G.V. Zapparoli, A. Hadley, R. Holian, E. Boehm, V. Heong, E. Sanij, R.B. Pearson, J.J. Krais, N. Johnson, O. McNally, S. Ananda, K. Alsop, K.J. Hutt, S.H. Kaufmann, K.K. Lin, T.C. Harding, N. Traficante, A. deFazio, I.A. McNeish, D.D. Bowtell, E.M. Swisher, A. Dobrovic, M.J. Wakefield and C.L. Scott, “Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma,” Nat Commun., vol. 9, pp. 3970-3985, 2018.
19. D.B. Asante, L. Calapre, M. Ziman, T.M. Meniawy and E.S. Gray, “Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time?” Cancer Lett, vol. 468, pp. 59-71, 2019.
20. W. Wasenang, P. Chaiyarit, S. Proungvitaya and T. Limpaiboon, “Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases,” Clin. Epigenetics, vol. pp. 11-39, 2019.
21. L. Giannopoulou, S. Kasimir-Bauer and E.S. Lianidou, “Liquid biopsy in ovarian cancer: recent advances on circulating tumor cells and circulating tumor DNA,” Clin. Chem. Lab. Med., vol. 56, pp. 186-197, 2018.
22. L. Giannopoulou, I. Chebouti, K. Pavlakis, S. Kasimir-Bauer and E.S. Lianidou, “RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA,” Oncotarget, vol. 8, pp. 21429-21443, 2017.
23. C.D.M. Campos, S.S.T. Gamage, J.M. Jackson, M.A. Witek, D.S. Park, M.C. Murphy, A.K. Godwine and S.A. Soper, “Microfluidic-based solid phase extraction of cell free DNA,” Lab Chip, vol. 18, pp. 3459-3470, 2018.
24. M. Chimonidou, A. Tzitzira, A. Strati, G. Sotiropoulou, C. Sfikas, N. Malamos, V. Georgoulias and E. Lianidou, “CST6 promoter methylation in circulating cell-free DNA of breast cancer patients,” Clin. Biochem., vol. 46, pp. 235-240, 2013.
25. Y. Shin, A.P. Perera, C.C. Wong and M.K. Park, “Solid phase nucleic acid extraction technique in a microfluidic chip using a novel non-chaotropic agent: dimethyl adipimidate,” Lab Chip, vol. 14, pp. 359–368, 2014.
26. R. Exner, W. Pulverer, M. Diem, L. Spaller, L. Woltering, M. Schreiber, B. Wolf, M. Sonntagbauer, F. Schroeder, J. Stift, F. Wrba, M. Bergmann, A. Weinhausel and G. Egger, “Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers,” Br. J. Cancer, vol. 113, pp. 1035-1045, 2015.
27. A. Stark, D.J. Shin, T. Pisanic, K.W. Hsieh and T.H. Wang, “A parallelized microfluidic DNA bisulfite conversion module for streamlined methylation analysis,” Biomed Microdevices, vol. 18, pp. 1-5, 2016.
28. J. Yoon, M.K. Park, T.Y. Lee, Y.J. Yoon and Y. Shin, “LoMA-B: a simple and versatile lab-on-a-chip system based on single-channel bisulfite conversion for DNA methylation analysis,” Lab Chip, vol. 15, pp. 3530-3539, 2015.
29. C.H. Wang, H.C. Lai, T.M. Liou, K.F. Hsu, C.Y. Chou and G.B. Lee, “A DNA methylation assay for detection of ovarian cancer cells using a HpaII/MspI digestion-based PCR assay in an integrated microfluidic system,” Microfluid. Nanofluid., vol. 15, pp. 575–585, 2013.
30. M.F. Fraga, E. Ballestar, G. Montoya1, P. Taysavang, P.A. Wade and M. Esteller, “The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties,” Nucleic Acids Res., vol. 31, pp. 1765-1774, 2003.
31. A. De, W. Sparreboom, A. van den Berg and E.T. Carlen, “Rapid microfluidic solid-phase extraction system for hyper-methylated DNA enrichment and epigenetic analysis,” Biomicrofluidics, vol. 8, pp. 054119(1-11), 2014.
32. M. Esteller, J.M. Silva, G. Dominguez, F. Bonilla, X. Matias-Guiu, E. Lerma, E. Bussaglia, J. Prat, I.C. Harkes, E.A. Repasky, E. Gabrielson, M. Schutte, S.B. Baylin and J.G. Herman, “Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors,” J Natl Cancer Inst., vol. 92(7), pp. 564-569, 2000.
33. K.M. Shen, N.M. Sabbavarapu, C.Y. Fu, J.T. Jan, J.R. Wang, S.C. Hung and G.B. Lee, “An integrated microfluidic system for rapid detection and multiple subtyping of influenza A viruses by using glycan-coated magnetic beads and RT-PCR,” Lab Chip, vol. 19, pp. 1277-1286, 2019.
34. S.Y. Yang, J.L. Lin and G.B. Lee, “A vortex-type micromixer utilizing pneumatically driven membranes,” J. Micromech. Microeng., vol. 19, pp. 1-9, 2009.
35. Y. Stelzer, C.S. Shivalila, F. Soldner, S. Markoulaki, and R. Jaenisch, “Tracing dynamic changes of DNA methylation at single cell resolution,” Cell, vol. 163, pp. 218-229, 2015.
36. Z. Barekati, R. Radpour, C. Kohler and X.Y. Zhong, “Specificity of methylation assays in cancer research: a guideline for designing primers and probes,” Obstet Gynecol Int., vol. 2010, pp. 1-7, 2010.
37. B.W. Heimer, T.A. Shatova, J.K. Lee, K. Kaastrup, K.F. Jensen and H.D. Sikes, “Evaluating the sensitivity of hybridization-based epigenotyping using a methyl binding domain protein,” Analyst., vol. 139, pp. 3695-3701, 2014.