研究生: |
陳元宗 Yuan-Tsung Chen |
---|---|
論文名稱: |
銥錳交換耦合之(鈷鐵硼/氧化鋁/鈷)磁穿隧元件的機械性,電性及磁性研究 Mechanical, electrical and magnetic properties of IrMn exchange-biased CoFeB/AlOx/Co magnetic tunnel junctions |
指導教授: |
吳振名
Jenn-Ming Wu 任盛源 Shien-Uang Jen 姚永德 Yeong-Der Yao |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 185 |
中文關鍵詞: | 磁伸縮 、磁穿隧元件 、應力效應 、交換耦合 、穿隧磁阻 、銥錳(111)優選指向 |
外文關鍵詞: | Magnetostriction, Magnetic tunneling junction, MTJ, Straining effect, Exchange coupling, Tunneling magnetoresistance, TMR, IrMn(111)(Texturing) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈷鐵硼(Co60Fe20B20)/氧化鋁(AlOx)/鈷(Co)所組成之磁穿隧元件(Magnetic tunneling junction, MTJ),因Co60Fe20B20具有高磁化率(Polarization)的特性,引起廣泛之研究。然而,在許多研究中卻忽視了MTJ的機械性質。例如:磁伸磁(Magnetostriction)、應力效應(Straining effect)對於整個磁穿隊元件之影響。本文中主要研究MTJ之晶體微結構、磁性質、機械性質、電性及奈米檢測。藉由磁控濺鍍法(DC-magnetron sputtering)製作鐵磁性、金屬薄膜,和射頻磁控濺鍍法(RF-magnetron sputtering)製作AlOx陶瓷薄膜。首先,先針對單層之鈷和鈷鐵硼薄膜探討,以深入了解各單層膜之全部相關特性。接著,著手製作磁穿隧元件即Co60Fe20B20/AlOx/Co。藉由高解析之電子顯微鏡(High-resolution cross-sectional transmission electron microscopy (HR X-TEM)之能量分析儀(Energy dispersive X-ray)技術了解界面元素組成分布對其磁伸縮之影響。更進一步地探討鐵磁層(Ferromagnet)鈷和反鐵磁層(Antiferromagnet)銥錳間交換耦合(Exchange coupling)之現象,並將之加入整個磁穿隧元件,最終使其成為一個具有交換耦合特性之MTJ元件。除此之外,亦研究外加施力對MTJ之穿隧磁阻(Tunneling magnetoresistance, TMR)之影響;探討在應力作用之下,其磁阻及電阻改變之趨勢,並研究TMR和交換偏壓場(Exchange-biasing field, Hex)大小之變化,來總結本篇論文之研究。
在單層之Co 和CoFeB薄膜中,從歐傑電子能譜儀(Auger electron spectrometer, AES)之縱深成分分析(Depth profiling)發現膜表面具有17.5-25 Å厚的氧化鈷層(CoOx)和(CoFeB)Ox會影響磁性質,並且推導出該CoOx和(CoFeB)Ox之磁性為鐵磁性(Ferromagnet)或弱鐵磁性(Weak ferromagnet)並非習知的順磁(Paramagnet)或反鐵磁性。在Co60Fe20B20/AlOx/Co MTJ之磁伸縮研究中,發現存在於界面O、Al、Fe、Co之含量,對於其淨磁伸縮之傾向各有不同程度之影響。在Co/IrMn之交換耦合中,針對不同鐵磁及反鐵磁薄膜厚度探討交換偏壓場Hex大小。IrMn(111)優選指向(Texturing)對其磁性質影響。最後,把整個元件在外力作用下探討其TMR磁阻變化並發現各種不同特徵,以利於在磁性隨機存取記憶體(Magnetoresistance random access memory, MRAM)或應力感測器(Strain gauge sensor)之應用。
從我們實驗結果可知,最佳系統的MTJ組合為:Si(100)/Ta(30 Å)/CoFeB(75 Å)/AlOx(30 Å)/Co (75 Å)/IrMn(90 Å)/Ta(100 Å),因為此系統於外加應力 25 × 10-6範圍內,具有高TMR、高Hex和最小磁伸縮,且元件性質對於外加應力變化的反應程度是最少的,適合於磁頭和MRAM實際上應用。
Co60Fe20B20/AlOx/Co is a typical device used as a magnetic tunneling junction (MTJ), because Co60Fe20B20 has a high polarization characterization, which means the high tunneling magnetoresistance (TMR). This kind of MTJ system has been studied extensively. However, many researches downplayed the mechanical properties, such as magnetostriction and straining effect of MTJ. In this study, I concentrated on the studies of the crystal structure, magnetic, mechanical, electrical, and nanoscale properties of this MTJ. DC-magnetron sputtering was employed to fabricate various magnetic layers and RF-magnetron sputtering AlOx tunneling layer. First, the single Co and Co60Fe20B20 layer were investigated respectively in order to understand the properties of each single layer. Next, Co60Fe20B20/AlOx/Co device was fabricated to observe the interfacial effect on magnetostriction of MTJ; nanobeam energy dispersive X-ray (EDX) device was incorporated in high-resolution cross-sectional Transmission Electron Microscopy (HR X-TEM). Furthermore, the exchange-biasing phenomenon of the Co(Ferromagnet)/Ir20Mn80(Antiferromagnet) system was studied. Finally, the TMR of the IrMn exchange-biased MTJs was investigated: including the variations of TMR, resistance (R), and exchange-biasing field (Hex) as a function of AlOx thickness ( ) .
From the Auger-depth profile analysis, it was found that there is one CoOx or (CoFeB)Ox oxide layer, lying on top surface of the Co or CoFeB film, and another CoOx or (CoFeB)Ox oxide layer, lying near the glass interface. Due to the proximity effect, the CoOx or (CoFeB)Ox oxide layer is weak ferromagnet, not paramagnet or antiferromagnet as expressed. In addition, the atomic concentrations of Fe, Al, and O as a function of in the laminated CoFeB/AlOx( )/Co can affect the trend of its net magnetostriction. The Ir20Mn80 texture plays an important role on the magnetic properties in the Co/Ir20Mn80 system. Eventually, all the MTJs could sustain the external stress effect without failing.
Based on my studies, the optimal candidate of this MTJ system is: Si(100)/Ta(30 Å)/CoFeB(75 Å)/AlOx(30 Å)/Co (75 Å)/IrMn(90 Å)/Ta(100 Å), because it has the high TMR, large Hex, and the smallest magnetostriction. Moreover, in the 25 × 10-6 real environment this type of MTJ is stable in the recording head and MRAM application; because it is less sensitive to the external stresses.
參考文獻
1. 張耀庭、陳恭,科儀新知,22卷4期,62(2001)。
2. 賴志煌,科儀新知,22卷3期,66(2000)。
3. M. Julliere, Phys. Lett. 54A, 225 (1975).
4. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
5. W. J. Gallagher, S. S. P. Parkin, X. P. Bian, R. A. Altman, and G. Xiao, J. Appl. Phys. 81, 3741 (1997).
6. O. Kohmoto, Y. Yoshitomi, and H. Murakami, IEEE Trans. Magn. 41, 3434, (2005).
7. Kingstu T and Sakai K, Phys. Rev. B, 48, 4140 (1993).
8. A. Berger, M. J. Pechan, R. Compton, J. S. Jiang, J. E. Pearson, and S. D. Bader, Physica B, 306, 235 (2001).
9. A. T. McCallum and S. E. Russek, IEEE Trans. Magn. 40, 2239, (2004).
10. J. B. Yi, J. Ding, B. H. Liu, Z. L. Dong, T. White, and Y. Liu, J. Magn. Magn. Mater., 285, 224 (2005).
11. Dexin Wang, Cathy Nordman, James M. Daughton, Zhenghong Qian, and Jonathon Fink, IEEE Trans. Magn. 40, 2269 (2004).
12. N. Wiese, T. Dimopoulos, M. Rührig, J. Wecker, H. Brückl, and G.. Reiss , J. Magn. Magn. Mater. 290-291, 1427 (2005).
13. Susana Cardoso, Ricardo Ferreira, Paulo P. Freitas, Maureen MacKenzie, John Chapman, Joao O. Ventura, Joao B. Sosa, and Ulrich Kressig, IEEE Trans. Magn. 40, 2272 (2004).
14. Mutsuko Jimbo, Kazuya Komiyama, Hidekazu Matue, Shigeru Tsunashima, and Susumu Uchiyama, Jpn.J. Appl. Phys. 34, L112 (1995).
15. M. Jimbo, K.Komiyama, Y. Shirota, Y. Fujiwara, S. Tsumashima, and M. Matsuura, J. Magn. Magn. Mater. 165, 308 (1997).
16. M. Fujita, K. Yamano, A. Maeda, T. Tanuma, and M. Kume, J. Appl. Phys. 81, 4909 (1997).
17. S. Tsunashima, M. Jimbo, Y. Imada, and K. Komiyama, J. Magn. Magn. Mater. 165, 111 (1997).
18. T. Feng and J. R. Childress, J. Appl. Phys. 85, 4937 (1999).
19. 鄭振東,“實用磁性材料”,全華科技圖書股份有限公司(1999)。
20. 近角聰信著,張煦、李學養譯,“磁性物理學”,聯經出版(1982)。
21. 劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚,“機械材料學”,全華科技圖書股份有限公司(1996)。
22. 王坤池,國立台灣科技大學機研所碩士論文(2001)。
23. William F.Smith著,李春穎、許煙明、陳忠仁譯,“材料科學與工程”,高立圖書有限公司(1994)。
24. 陳宿惠,國立台灣師範大學物理所碩士論文(1999)。
25. 陳淑貞,國立台灣師範大學物理所碩士論文(1999)。
26. 聶亨芸,國立清華大學材料科學工程研究所碩士論文(2002)。
27. 金重勳,磁性技術手冊,中華民國磁性技術協會出版(2002)。
28. B. D. Cullity, “Introduction to magnetic material”, Addison-Wesley, (1972).
29. P. M. Tedrow and R. Meservey, Phys. Rev. B 7, 318 (1973).
30. W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962).
31. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).
32. J. Nogues and Ivan K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
33. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
34. L. H. Chen, S. Jin, T. Tiefel and R. Ramesh, J. Mater. Res., 9, 1134 (1994).
35. P. Grunberg, R. Schreiber, Y. Pang, U. Walz, M. B. Brodsky, and H. Sowers, J. Appl. Phys. 61, 3750 (1987).
36. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Greuzet, A. Frienderich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
37. G. Binasch, P. Gurngerg, F. Saurenbach, and W. Zinn, Phys. Rev. B. 39, 4828 (1989).
38. S. Jin, T. H. Tiefel, M. McCormak, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science, 264, 413 (1994).
39. 莊達仁,“VLSI製造技術”,高立圖書有限公司(2000)。
40. L. Eckertova, T. Ruzicka, “Diagnostics and Applications of Thin Films”, Ch. 1& 2, Institute of Physics Publishing, 1993.
41. 曲喜新、過璧君,”薄膜物理”,電子工業出版社(1994)。
42. D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, Chapman & Hall (1992).
43. K. N. Tu, et.al., “Electronic Thin Film Science for Electrical Engineers and Material Scientists”, Ch. 1, Macmillan Publishing, 1992.
44. 陳宿惠,國立台灣師範大學物理所碩士論文(1999)。
45. 黃榮俊,物理雙月刊,十七卷六期,663-973(1995)。
46. 陳文智,國立台灣科技大學機研所碩士論文(2006)。
47. 蘇清森,“真空技術”,東華書局(1992)。
48. John F. O’Hanlon, “A User’s Guide to Vacuum Technology ”, Wiley (1989).
49. “真空技術與應用”,行政院國家科學委員會精密儀器發展中心(2001)。
50. 呂登復,”實用真空技術”,國興出版(1986)。
51. 許如宏、林鶴南,物理雙月刊,二十五卷五期,620-631(2003)。
52. 賴一凡,國立台灣科技大學機研所碩士論文(2002)。
53. 汪建民 主編,“材料分析”,中國材料科學學會(1998)。
54. 潘扶民,電子月刊1卷2期96-103(1995)。
55. D. Briggs, M. P. Seah, “Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy ”,John Wiley & Sons (1994).
56. D. Chattarji, “The Theory of Auger Transitions”, London:Academic Press (1976).
57. Lawrence E. Davis etc., “Handbook of Auger Electron Spectroscopy” (1976).
58. 劉俊輝,國立海洋大學光電所碩士論文(2002)。
59. 高銘南,國立海洋大學光電所碩士論文(2001)。
60. 蔡宗霖,國立高雄師範大學物理所碩士論文(2006)。
61. 張有進,國立台灣科技大學機研所碩士論文(2005)。
62. B. D. Cullity, “Elements of X-ray diffraction,” Wesley, New York, 1956.
63. Y. K. Kim and T. J. Silva, Appl. Phys. Lett., 68, 2885 (1996).
64. T. Ambrose and C. L. Chien, Phys. Rev. Lett., 76, 1743 (1996).
65. D. Sander, A. Enders, and J. Kirschner, J. Magn. Magn. Mater., 200, 439 (1999).
66. H. Szymcaak, M. Rewieński, R. Żuberek, J. Magn. Magn. Mater., 139, 151
(1995).
67. S. Chikazumi, “Physics of Magnetism,” Wiley & Sons, New York, 1964.
68. H. Kronmüller, J. Magn. Magn. Mater., 124, 159 (1981).
69. H. Kronmüller, J. Appl. Phys., 52, 1859 (1981).
70. R. Jérome, T. Valet and P. Galtier, IEEE Trans. Magn., 30, 4878 (1994).
71. S. U. Jen, C. C. Yu, C. H. Liu, and G. Y. Lee, Thin Solid Films, 434, 316 (2003).
72. S. U. Jen, T. C. Wu, and C. H. Liu, J. Magn. Magn. Mater. 256, 54 (2003).
73. K. L. Chopra, Thin Film Phenomena, (McGraw-Hill, New York, 1969), Chap. IV.
74. H. D. Liu, Y. P. Zhao, G. Ramanath, S. P. Muraka and G. C. Wang, Thin Solid Films, 384, 151 (2001).
75. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).
76. S. Colis, G. Gieres, L. Bär, and J. Wecker, Appl. Phys. Lett. 83, 948 (2003).
77. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74,
3273 (1995).
78. S. Dokupil, M. -T. Bootsmann, S. Stein, M. Löhndorf, and E. Quandt, J. Magn.
Magn. Mater. 290-291, 795 (2005).
79. T. Miyazaki, S. Kumagai, and T. Yaoi, J. Appl. Phys. 81, 3753 (1997).
80. Jagadeesh S. Moodera and Lisa R. Kinder, J. Appl. Phys. 79, 4724 (1996).
81. M. P. Hollingworth, M. R. J. Gibbs, and S. J. Murdoch, J. Appl. Phys. 94, 7235
(2003).
82. S. Rengarajan, E. J. Yun, W. S. Kang, and R. M. Walser, J. Appl. Phys. 81, 4761
(1997).
83. Yasuhiro Nagai, Masakatsu Senda, and Tomoyuki Toshima, J. Appl. Phys. 63, 1136 (1988).
84. F. W. A. Dirne and C. J. M. Denissen, J. Magn. Magn. Mater. 78, 122 (1989).
85. Y. T. Chen, S. U. Jen, Y. D. Yao, J. M. Wu, C. C. Lee, and A. C. Sun, IEEE Trans.
Magn. 42, 278 (2006).
86. S. U. Jen, Y. D. Yao , Y. T. Chen, , J. M. Wu, C. C. Lee, T. L. Tsai, and Y. C. Chang, J. Appl. Phys. 99, 053701 (2006).
87. R. C. O’Handley, Amorphous Metallic Alloys, edited by F E. Luborsky
(Butterworth & Co, London, 1983), p. 274.
88. D. Sander, Rep. Prog. Phys. 62, 809 (1999).
89. T. Hughes, K. O’Grady, H. Laidler, and R. W. Chantrell, J. Magn. Magn. Mater. 235, 329 (2001).
90. D. Lacour, O. Durand, J. -L. Maurice, H. Jaffrès, F. Nguyen Van Dau, F. Petroff, P. Etienne, J. Humbert, and A. Vaurès, J. Magn. Magn. Mater. 270, 403 (2004).
91. Hua-Rui Liu, Tian-Ling Ren, Bin-Jun Qu, Li-Tian Liu, Wan-Jun Ku, and Wei Li, Thin Solid Film. 441, 111 (2003).
92. Ken-ichi Imakita, Masakiyo Tsunoda, and Migaku Takahashi, Appl. Phys. Lett. 85, 3812 (2004).
93. H. R. Liu, B. J. Qu, T. L. Ren, L. T. Liu, H. L. Xie, C. X. Li, and W. J. Ku, J. Magn. Magn. Mater. 267, 386 (2003).
94. Sebastiaan van Dijken, Matthew Crofton, and J. M. D. Coey, J. Magn. Magn. Mater. 290-291, 1290 (2005).
95. J. van Driel, F. R. de Boer, K. -M. H. Lenssen, and R. Coehoorn, J. Appl. Phys. 88, 975 (2000).
96. M. Ali, C. H. Marrows, M. Al-Jawad, and B. J. Hickey, A. Misra, U. Nowak, and
K. D. Usadel, Phys. Rev. B 68, 214420 (2003).
97. J. Nogués and Ivan K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
98. S. -F. Cheng and P. Lubitz, J. Appl. Phys. 87, 4927 (2000).
99. P. Wisniowski, T. Stobiecki, J. Kanak, G. Reiss, and H. Bruckl, J. Appl. Phys. 100, 13906 (2006).
100. A. E. Berkowitz and Kentaro Takano, J. Magn. Magn. Mater. 200, 552 (1999).
101. G. Malinowski, M. Hehn, S. Robert, O. Lenoble, and A. Schuhl, J. Appl. Phys. 98, 113903 (2005).
102. S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 89, 042505 (2006).
103. X. F. Han and A. C. C. Yu, J. Appl. Phys. 95, 764 (2004).
104. M. Sato and K. Kobayashi, Jpn. J. Appl. Phys. 36, L200 (1997).
105. T. Moriyama, C. Ni, W. G. Wang, X. Zhang, and J. Q. Xiao, Appl. Phys. Lett. 88, 222503 (2006).
106. Y. T. Chen, S. U. Jen, Y. D. Yao, J. M. Wu, and A. C. Sun, Appl. Phys. Lett. 88, 222509 (2006).
107. S. Kumagai, N. Tezuka, and T. Miyazaki, Jpn. J. Appl. Phys. 36, L1498 (1997).
108. Z. Diao, D. Apalkov, M. Pakala, Y. Ding, A. Panchula, and Y. Huai, Appl. Phys. Lett. 87, 232502 (2005).
109. Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 042506 (2006).
110. J. R. Rhee, J. Magn. Magn. Mater. 304, e300 (2006).
111. J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).
112. R. M. Eisberg, Fundamentals of Modern Physics, (Wiley, New York, 1961), p. 231.
113. J. J. Yang, P. F. Ladwig, Y. Yang, C. Ji, Y. A. Chang, F. X. Liu, B. B. Pant, and A. E. Schultz, J. Appl. Phys. 97, 10C918 (2005).
114. D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 92502 (2005).
115. D. Wang, C. Nordman, Z. Qian, J. M. Daughton, and J. Myers, J. Appl. Phys. 97, 10C906 (2005).