簡易檢索 / 詳目顯示

研究生: 李睿哲
Lee, Jui-Che
論文名稱: n型多晶矽射極於矽晶太陽能電池應用
n+poly emitters for Si solar cell application
指導教授: 甘炯耀
Gan, Jon-Yiew
口試委員: 黃金花
黃振昌
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 多晶矽射極
外文關鍵詞: polysilicom emitters
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高效矽晶太陽能電池中,有效抑制高摻雜的射極與集極的電子與電洞的復合速率是提升電池效率的一個重要關鍵。多晶矽接觸是少數幾種具有此種潛力的材料。它是將高摻雜多晶矽鍍製在經過氧化的矽晶基材所形成的結構體,一般稱為穿隧氧化層鈍化接觸(Tunneling Oxide Passivated Contact, TOPCon),其可以有效抑制復合速率主要是利用夾在多晶矽與矽基材間的介面氧化層來抑制少數載子在氧化層表面進行復合,又可阻擋其進入多晶矽進行復合;因此能夠有效的降低飽和電流密度,提升整體太陽能電池效率。不過這層介面氧化層也會阻擋主要載子 (majority carriers) 的通過,進而升高接觸電阻 (specific contact resistance, c),使得整體串連電阻上升降低電池效率,因此高性能的太陽能電池必須能同時滿足低Jo與低c的應用需求。
    在本實驗中,為了研究如何同時得到低的飽和電流密度以及特徵接觸電阻,在分析飽和電流密度方面,我們使用硝酸和硫酸之濕式溶液成長方法來製備超薄界面氧化層,接著以低壓化學沉積法來製備多晶矽層,隨後透過高溫退火來將摻雜物活化,以達到高摻雜之目的。接著利用PCD量測法,分別獲得在不同退火溫度條件以及界面氧化層之飽和電流密度值。在分析接觸電阻方面,我們透過設計五道光罩來完成接觸電阻量測結構製備,最後在退火溫度875˚C,以硝酸成長之界面氧化層中獲得最佳參數為Jo=3.2(fA/cm2),c=3.3(mΩ-cm2)。


    To attain high-efficiency silicon solar cells, suppressing the recombination of electrons and holes at the highly doped emitter and collector is the key to increase the open circuit voltage and energy conversion efficiency. Polysilicon contacts are one of the few promising materials. It is a structure with heavily doped polysilicon and thin oxide layer on the silicon substrate, commonly called Tunnel Oxide Passivated Contact (TOPCon). The reason why TOPCon can effectively lower the saturation current density is that the interface oxide layer between the polysilicon and silicon substrate blocks the minority carrier to reach the polysilicon layer. However, this layer of interfacial oxide also blocks the major carrier to transport, thus increasing the specific contact resistance(c). Therefore, high-performance polysilicon must be able to meet both low Jo and c。
    In our study, we aim to achieve the low saturation current density as well as the specific contact resistance. For the analysis of lowering the saturation current density, we fabricate chemical oxide layer by NAOS and SPM method. Heavily doped polysilicon layer is deposited through LPCVD, and the dopant is activated through high temperature annealing. Based on PCD measurement, We attain the saturation current density with different annealing temperature and interfacial oxide layer. For the analysis of specific contact resistance, we design 5 masks to fabricate the structure for measuring the specific contact resistance. Finally under the condition of NAOS growing interfacial oxide with annealing temperature 875˚C, we attain the best result of Jo=3.2(fA/cm2),c=3.3(mΩ-cm2).

    摘要 I Abstract II 致謝 III 圖目錄 VII 表目錄 X 第一章、前言與研究動機 1 第二章、文獻回顧 8 2-1 太陽能電池介紹 8 2.1.1、太陽能電池基本工作原理 8 2.1.2、轉換效率因子 9 2-2 載子復合機制 13 2-3 高效率太陽能電池介紹 19 2.3.1、指叉狀背接觸太陽能電池 19 2.3.2、異質結構太陽能電池 20 2.3.3、穿隧氧化層太陽能電池 21 2-4 穿隧界面氧化層傳輸機制與成長方式 24 2-5 金屬與半導體接觸理論 28 2.5.1金半接觸理論 28 2.5.2 特徵接觸電阻 29 2-6 特徵接觸電阻量測 32 2.6.1 TmLM(Transmission line model)結構 32 2.6.2 TfLM(Transfer length model)結構 34 2.6.3 Kelvin結構 35 第三章、實驗步驟與方法 38 3-1 飽和電流密度量測結構製備與檢測 38 3.1.1 n型多晶矽試片製備 38 3.1.2載子生命週期量測 39 3-2 特徵接觸電阻量測結構製備 43 3.2.1 特徵接觸電阻結構製備 43 3.2.2 特徵接觸電阻結構量測方法 49 第四章、結果與討論 55 4-1 n型多晶矽飽和電流密度量測結果 55 4.1.1 界面氧化層對飽和電流密度影響 55 4.1.2 不同退火溫度對飽和電流密度影響 55 4.1.3 不同表面處理試片對飽和電流密度影響 57 4.1.4 潔淨度對飽和電流密度影響 57 4.1.5 多晶矽鈍化結構穩定度測試 58 4-2 n型多晶矽接觸電阻量測結果 60 4.2.1 n+poly/ n+Si TfLM結構接觸電阻量測 60 4.2.2 n+poly/ n+Si Kelvin結構接觸電阻量測 61 4.2.3 Al / n+poly接觸電阻量測 63 4.2.3 Al / n+ Si接觸電阻量測 65 4-3 探討多晶矽鈍化接觸結構應用於高效太陽能電池 66 4.3.1 多晶矽鈍化結構應用於p-IBC電池製備 66 4.3.2 p-IBC電池效率改善分析 67 4-4 元件照片 81 第五章、結論 84 第六章、參考文獻 86 附錄A、接觸電阻量測結構光罩圖形設計 93 附錄B、光罩圖形中各元件尺寸 102

    [1] Jianhua Zhao et al., 24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates, Prog. Photovolt: Res. Appl., 7 471±474 (1999)
    [2] M. Green, Silicon Solar Cells, Advanced Principles and Practice, University of New South Wales, ISBN 0 7334 0994 6, Section 9.4, Contact Recombination (1995).
    [3] M. Taguchi et al., 24.7% record efficiency HIT solar cell on thin silicon wafer, IEEE J. Photovoltaics, 4 (1) 96–99 (2014).
    [4] Makoto Tanaka et al., Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer), Jpn. J. Appl. Phys. Vol. 31 Pt. 1 No. 11 (1992).
    [5] Kunta Yoshikawa et al., Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology , Solar Energy Materials and Solar Cells xxx (xxxx) xxx–xxx
    [6] R. Peibst et al., Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? , Solar Energy Materials & Solar Cells, 158 60–67 (2016)
    [7] S.W. Glunz et al., The irresistible charm of a simple current flow pattern – 25% with a solar cell featuring a full-area back contact, in: Proceedings of the 31st EU-PVSEC, pp. 259–263 (2015).
    [8] A.Neugroschel et al., Experimental study of the minority-carrier transport at the polysilicon—monosilicon interface, IEEE Trans. Electron Device, 32 807–816 (1985).
    [9] I.R.C. Post et al., Polysilicon emitters for bipolar transistors: a review and re-evaluation of theory and experiment, IEEE Trans. Electron Device, 39 1717–1731 (1985).
    [10] Udo Römer et al., Recombination behavior and contact resistance of n+ and p+ poly-crystalline Si/mono-crystalline Si junctions, Solar Energy Materials & Solar Cells, 131 85–91 (2014)
    [11] J.L. Egley et al., Demonstration of the importance of the oxide breakup in polysilicon-contacted-emitter modeling, IEEE Trans. Electron Device, 38 2112–2117 (1991).
    [12] G.R. Wolstenholme et al., An investigation of the thermal stability of the interfacial oxide in polycrystalline silicon emitter bipolar transistors by comparing device results with high-resolution electron microscopy observations, J. Appl. Phys., 61 225–233 (1987).
    [13] R. Peibst et al., A simple model describing the symmetric I–V characteristics of p polycrystalline Si/n monocrystalline Si, and n polycrystalline Si/p monocrystalline Si junctions, IEEE J. Photovolt., 4 841–850 (2014).
    [14] U. Römer et al., Recombination behavior and contact resistance of n + and p + poly-crystalline Si/ mono-crystalline Si junctions, Sol. Energy Mater. Sol. Cells, 131 85–91 (2014).
    [15] J. Y. Gan et al., Polysilicon emitters for silicon concentrator solar cells, in: Proceedings of 21st IEEE-PVSC, 245-250 (1990).
    [16] H. K. Asuha et al., Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density, Journal of Applied Physics, 94(11) 7328-7335 (2003)
    [17] H. Kobayashi et al., Nitric acid oxidation of Si (NAOS) method for low temperature fabrication of SiO2/Si and SiO2/SiC structures, Appl. Surf. Sci., 256 5744–5756 (2010).
    [18] M. Depas et al., Tunnel Oxides Grown by Rapid Thermal Oxidation, Elsevier Microelectronic Engineering, 22(6) l-64 (1993)
    [19] Dominic Tetzlaff et al., Evolution Of Oxide Disruptions: The (W)hole Story About poly-Si / c-Si Passivating Contacts , IEEE 978-1-5090-2724-8/16 (2016)
    [20]G. L.Patton et al., Impact of Processing Parameters on Base Current in Polysilicon Contacted Bipolar Transistors, In IEDM Tech. Dig., page 30 (1985)
    [21] DANIEL L.MEIER et al., Contact Resistance: Its Measurement and Relative Importance to Power Loss in a Solar Cell , IEEE Transactions on electrons devices, Vol. Ed-31, No. 5 (1984)
    [22] S. M. Sze, Semiconductor Devices Physic and Technology ,3rd Ed
    [23]W.Shockley et al., Statistics of the recombinations of holes and electrons. Physical Review, 87(5):835-842 (1952)
    [24]R. N. Hall et al., Electron-hole recombination in germanium. Physical Review, 87:387-387 (1952).
    [25] Dieter K. Schroder , Semiconductor Material and Device Characterization, 3rd Ed
    [26] Michael Riena ̈cker et al., Junction Resistivity of Carrier-Selective Polysilicon on Oxide Junctions and Its Impact on Solar Cell Performance, IEEE Journal of Photovoltaic, Vol. 7, No. 1 (2017)
    [27] Di Yan et al., Passivating contacts for silicon solar cells based on boron-diffused recrystallized amorphous silicon and thin dielectric interlayers, Solar Energy Materials & Solar Cells, 152 73–79 (2016)
    [28] Shewchun J et al., “Theory of metal insulator semiconductor solar cells”, Journal of Applied Physics, 48 765 (1977).
    [29] T. F. Wietler et al., Pinhole density and contact resistivity of carrier selective junctions with polycrystalline silicon on oxide, Applied Physics Letters, 110 253902 (2017)
    [30]Di Yan et al., Solar Energy Materials & Solar Cells, 142 75-82 (2015)
    [31]Yuguo Tao et al., Photovoltaic Specialists Conference(PVSC) , IEEE 43rd(2016)
    [32]Ruchi Tiwari et al., Materials Science in Semiconductor Processing 16 2013-2020 (2013)
    [33] M.D. Lammert et al., “The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight”, IEEE Transaction On Electron Devices Vol, ED-24, No. 4 (1977)
    [34] Zindler and Ken Locklin, Mapping the Gap: The Road from Paris, BNEF/Ceres, 27 (2016).
    [35]林福銘, 太陽光電產業概況, 工研院綠能與環境研究所 (2017)
    [36] https://www.nrel.gov/pv/
    [37] S. Instrument., "WCT-120 photoconductance lifetime tester user manual v3.0.," Sinton Consulting (2013)
    [38] http://www.pveducation.org/pvcdrom/solar-cell-structure
    [39] Albert Polman et al., Science 15 April, Vol 352 ISSUE 6283 (2016)
    [40]國立清華大學材料系甘炯耀教授“光伏元件與技術 課程講義”(2018)
    [41]“p型背接式網印太陽能電池”, 國立清華大學材料科學工程系,辛壁宇博士論文(2018)
    [42]https://solarenergyforus.com/solar-panel-efficiency-lifespan/
    [43] Yuguo Tao et al.,” Carrier selective tunnel oxide passivated contact enabling 21.4% efficient large-area N-type silicon solar cells”, IEEE 44th Photovoltaic Specialist Conference(PVSC) (2017)

    QR CODE