簡易檢索 / 詳目顯示

研究生: 魏子喬
Wei, Tzu-Chiao
論文名稱: 應用晶格波茲曼方法探討奈米粒子濃度與脈動流於百葉窗型微結構流道之熱傳增益
Lattice Boltzmann study of nanoparticle concentration and flow pulsation on heat transfer enhancement in a louvered microchannel
指導教授: 劉通敏
Liou, Tong-Miin
口試委員: 黃柏文
Hwang, Po-Wen
許文震
Sheu, Wen-Jenn
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 139
中文關鍵詞: 百葉窗微結構奈米流體脈動流微流道熱傳晶格波茲曼方法
外文關鍵詞: Louver Microstructures, Nanofluids, Pulsating Flow, Microchannel, Heat Transfer, Lattice Boltzmann Method
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著電子元件微小化與功率提高,其單位面積產生的熱能也急遽上升,如何提高散熱效率來保持產品壽命成為一個重要問題。傳統散熱方法如鰭片與風扇已經無法滿足現今電子元件的散熱需求,利用矽等高分子材料製成水冷式微流道熱沉(MCHS),是現在大量興起的散熱技術。本研究利用晶格波茲曼法(LBM)探討Al2O3/water奈米流粒子濃度(ϕ)與脈動流對微流道之層流強制對流熱傳的影響。為進一步提升擾流效果,微流道中排佈二到八個百葉窗型微結構,其對應的間距比(PR)為0.25到1.75。基於流道水力直徑與平均速度的雷諾數(Re)範圍為100到400,脈動流為三角波形,其史卓赫數(St)範圍為0到2.8,ϕ變化範圍為0到4%。數值方面,採用雙分佈函數LBM模擬通道內流場與溫度場。模擬結果發現穩態流場下百葉窗型微結構能擾亂主流且將冷卻流體導引至壁面,其平均紐塞數(Nu)在PR=0.25時相比於全展平滑管道提升4.94倍。而在流道中加入奈米流體後發現熱傳可進一步提升至7.06倍,且壓損(f ̅/f_0)幾乎不受影響。最後將穩態流入口改為脈動流入口後發現在特定St下脈動流場能在百葉窗型微結構後方產生多個膨脹收縮之渦流,並沖散結構後方的迴流死區,促進壁面高溫流體與中心冷卻流體混合。在百葉窗微結構、脈動以及奈米流體的共同效應下,本研究MCHS最大平均Nu較全展平滑直管道提升至8.79倍,而相應f ̅/f_0則達到29.1倍。與前人數據比較,當前流道設計在f ̅/f_0<30的區間內有最高的熱傳增益,從而填補這一區段內微流道設計的空白。


    With increasing power and miniaturization of electronic components in recent years, their heat generation per unit area has grown rapidly, which makes effective cooling techniques necessary to maintain an acceptable electronic life. The traditional cooling techniques such as pin fin and fan cooling can no longer meet the heat load requirements of electronic components nowadays. Instead, the water-cooled silicon microchannel heat sink (MCHS) has emerged as the most promising technology of heat transfer enhancement. Hence, the present study reports the effects of Al2O3/water nanoparticle concentration (ϕ) and flow pulsation on laminar forced convective heat transfer in a microchannel heat sink with lattice Boltzmann method (LBM). For better flow mixing, two to eight louver-like microstructures are arranged in tandem within the channel, corresponding to a pitch ratio (PR) of 0.25 to 1.75. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, the pulsating inlet velocity is a triangular wave with Strouhal number (St) ranging from 0 to 2.8, and the value of ϕ varies from 0 to 4%. In terms of numerical models, a double distribution function LBM approach is adopted for modeling both fluid flow and heat transfer. Simulation results show that the louver structure can disturb the core flow and guide coolant towards the heated walls effectively in steady-state flows, resulting in an average Nusselt number (Nu) enhancement around 4.94 relative to that of the fully developed smooth channel at PR=0.25. By adding nanoparticles into the working fluids, it is further found that the average Nu ratio is raised to a higher value of 7.06 without inducing extra pressure loss(f ̅/f_0). As the flow inlet is switched to pulsation, there exist several contracting-expanding vortices behind the louver structure at some certain values of St. These vortices elimate the recirculation zone in that region, thus leading to better mixing of near-wall and core flows. Considering both the louver microstructure, pulsating flow, and nanofluids, a maximum overall Nu ratio of 8.79 is found whereas the relative f ̅/f_0 increases to 29.1. The present MCHS fills the blank at moderate (f ̅/f_0 < 30) by providing the best heat transfer performance at that region.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 符號表 XIV 第一章、前言 1 1.1研究動機 1 1.2研究背景 2 1.2.1計算流體力學 2 1.2.2奈米流體 3 1.2.3脈動流 3 1.3文獻回顧 4 1.3.1微流道流場與熱傳現象回顧 4 1.3.2擾流器增益熱傳回顧 5 1.3.3奈米流體增益熱傳回顧 10 1.3.4脈動流增益熱傳回顧 14 1.3.5晶格波茲曼方法回顧 18 1.4研究目的 20 1.4.1穩態流 20 1.4.2脈動流 21 第二章、數值方法 33 2.1介觀流體模型 33 2.2晶格波茲曼方法 34 2.2.1單鬆弛LBGK模型 35 2.2.2熱流體動力學的晶格波茲曼方法 36 2.3邊界條件 39 2.4收斂標準 46 2.5流體物性 47 2.5.1純水物性 47 2.5.2 Al2O3/water奈米流體物性 47 2.6晶格波茲曼法計算程式流程圖 49 第三章、百葉窗型微結構流道之穩態流模擬 55 3.1問題描述 55 3.1.1計算區域與座標系統 55 3.1.2邊界條件 55 3.1.3計算參數 56 3.2穩態流數值方法驗證 58 3.3網格獨立測試 58 3.4百葉窗型微結構之間距比的影響 59 3.5奈米流體的影響 62 第四章、百葉窗型微結構流道之脈動流模擬 83 4.1問題描述 83 4.1.1邊界條件 83 4.1.2計算參數 84 4.2脈動流數值方法驗證 85 4.3網格獨立測試 87 4.4脈動頻率與百葉窗型微結構之間距比的影響 87 4.5雷諾數的影響 97 4.6奈米流體的影響 99 4.7熱傳與壓損關係式 100 第五章、結論與未來建議 125 5.1結論 125 5.1.1穩態流 125 5.1.2脈動流 126 5.2未來規劃 127 附錄一 論文口試之補充答辯 129 參考文獻 134

    [1] S. D. Thakre, V. B. Swami, and P. D. Malwe, “Cooling System of Electronic Devices using Microchannel Heat Sink,” International Journal of Thermal Technologies, 4(2), (2014) pp.58-60.
    [2] J. C. Sturgis, and I. Mudawar, “Single-phase heat transfer enhancement in a curved, rectangular channel subjected to concave heating,” International Journal of Heat and Mass Transfer, 42(7), (1999) pp.1255-1272.
    [3] P. H. G. Allen, and T. G. Karayiannis, “Electrohydrodynamic enhancement of heat transfer and fluid flow,” Heat Recovery Systems and CHP, 15(5), (1995) pp.389-423.
    [4] W. Chang, G. Pu-Zhen, T. Si-Chao, and X. Chao, “Theoretical analysis of phase-lag in low frequency laminar pulsating flow,” Progress in Nuclear Energy, 58, (2012) pp.45-51.
    [5] D. B. Tuckerman, and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Letters, 2(5), (1981) pp.126-129.
    [6] M. E. Steinke, and S. G. Kandlikar, “Single-phase heat transfer enhancement techniques in microchannel and minichannel flows,” In Second International Conference on Microchannels and Minichannels, Rochester, NY, (2004) pp. 17-19.
    [7] B. W. Webb, and S. Ramadhyani, “Conjugate heat transfer in a channel with staggered ribs,” International Journal of Heat and Mass Transfer, 28(9), (1985) pp.1679-1687.
    [8] G. Croce, P. D’agaro, and C. Nonino, “Three-dimensional roughness effect on microchannel heat transfer and pressure drop,” International Journal of Heat and Mass Transfer, 50(25), (2007) pp.5249-5259.
    [9] S. A. Solovitz, and T. E. Conder, “Flow and Thermal Investigation of a Groove-Enhanced Minichannel Application,” Journal of Thermal Science and Engineering Applications, 2(1), (2010) pp. 011008-011008-11.
    [10] T. Desrues, P. Marty, and J. F. Fourmigué, “Numerical prediction of heat transfer and pressure drop in three-dimensional channels with alternated opposed ribs,” Applied Thermal Engineering, 45, (2012) pp.52-63.
    [11] L. Chai, G. D. Xia, and H. S. Wang, “Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls,” Applied Thermal Engineering, 92, (2016) pp.32-41.
    [12] M. M. Rahman, and P. Injeti, “Heat transfer in microtube or microchannel with protrusions,” Frontiers in Heat and Mass Transfer, 2(1), (2011) pp.013003.
    [13] L. Gong, K. Kota, W. Tao, and Y. Joshi, “Parametric numerical study of flow and heat transfer in microchannels with wavy walls,” Journal of Heat Transfer, 133(5), (2011) pp.051702-051702-10.
    [14] H. Ghaedamini, P. S Lee, and C. J. Teo, “Developing forced convection in converging–diverging microchannels,” International Journal of Heat and Mass Transfer, 65, (2013) pp.491-499.
    [15] S. V. Patankar, C. H. Liu, and E. M. Sparrow, “Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area,” ASME Journal of Heat Transfer, 99(2), (1977) pp.180-186.
    [16] K. M. Kelkar, and S. V. Patankar, “Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins,” Journal of heat transfer, 109(1), (1987) pp.25-30.
    [17] C. H. Cheng, and W. H. Hung, “Numerical prediction for laminar forced convection in parallel-plate channels with transverse fin arrays,” International Journal of Heat and Mass Transfer, 34(11), (1991) pp.2739-2749.
    [18] S. S. Mousavi, and K. Hooman, “Heat and fluid flow in entrance region of a channel with staggered baffles,” Energy Conversion and Management, 47(15), (2006) pp.2011-2019.
    [19] C. Liu, J. T. Teng, J. C. Chu, Y. L. Chiu, S. Huang, S. Jin, and H. H. Pan, “Experimental investigations on liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators,” International Journal of Heat and Mass Transfer, 54(13), (2011) pp.3069-3080.
    [20] A. Ebrahimi, E. Roohi, and S. Kheradmand, “Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators,” Applied Thermal Engineering, 78, (2015) pp.576-583.
    [21] S. Sripattanapipat, and P. Promvonge, “Numerical analysis of laminar heat transfer in a channel with diamond-shaped baffles,” International Communications in Heat and Mass Transfer, 36(1), (2009) pp.32-38.
    [22] S. U. S. Choi, and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” International Mechanical Engineering Congress and Exhibition, (1995) pp.99-106.
    [23] J. Li, Z. Li, and B. Wang, “Experimental viscosity measurements for copper oxide nanoparticle suspensions,” Tsinghua Science and Technology, 7(2), (2002) pp.198-201.
    [24] X. Q. Wang, and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International journal of thermal sciences, 46(1), (2007) pp.1-19.
    [25] H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, “New temperature dependent thermal conductivity data for water-based nanofluids,” International Journal of Thermal Sciences, 48(2), (2009) pp.363-371.
    [26] C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. Choi, “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement,” Applied Physics Letters, 87(15), (2005) pp.153107.
    [27] C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H. A. Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon,” International Journal of Heat and Fluid Flow, 28(6), (2007) pp.1492-1506.
    [28] J. C. Maxwell, A treatise on electricity and magnetism (Vol. 1). Clarendon press, 1881.
    [29] R. L. Hamilton, and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Industrial & Engineering chemistry fundamentals, 1(3), (1962) pp.187-191.
    [30] J. Buongiorno, “Convective transport in nanofluids,” Journal of Heat Transfer, 128(3), (2006) pp.240-250.
    [31] S. P. Jang, and S. U. Choi, “Cooling performance of a microchannel heat sink with nanofluids,” Applied Thermal Engineering, 26(17), (2006) pp.2457-2463.
    [32] S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” International journal of heat and fluid flow, 26(4), (2005) pp.530-546.
    [33] Y. T. Yang, and F. H. Lai, “Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method,” International Communications in Heat and Mass Transfer, 38(5), (2011) pp.607-614.
    [34] Z. Y. Ghale, M. Haghshenasfard, and M. N. Esfahany, “Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models,” International Communications in Heat and Mass Transfer, 68, (2015) pp.122-129.
    [35] O. A. Akbari, D. Toghraie, A. Karimipour, M. R. Safaei, M. Goodarzi, H. Alipour, and M. Dahari, “Investigation of rib's height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel,” Applied Mathematics and Computation, 290, (2016) pp.135-153.
    [36] R. Siegel, and M. Perlmutter, “Heat transfer for pulsating laminar duct flow,” Journal of Heat Transfer, 84(2), (1962) pp.111-122.
    [37] S. Y. Kim, B. H. Kang, and J. M. Hyun, “Heat transfer in the thermally developing region of a pulsating channel flow,” International journal of heat and mass transfer, 36(17), (1993) pp.4257-4266.
    [38] A. L. V. A. R. O. Valencia, and L. Hinojosa, “Numerical solutions of pulsating flow and heat transfer characteristics in a channel with a backward-facing step,” International journal Heat and mass transfer, 32(3), (1997) pp.143-148.
    [39] T. Nishimura, A. M. Morega, and K. Kunitsugu, “Vortex structure and fluid mixing in pulsatile flow through periodically grooved channels at low Reynolds numbers,” JSME International Journal Series B Fluids and Thermal Engineering, 40(3), (1997) pp.377-385.
    [40] T. Fukue, W. Hiratsuka, H. Shirakawa, K. Hirose and J. Suzuki, “Numerical investigation of effects of pulsating wave pattern on heat transfer enhancement around square ribs by pulsating flow,” International Symposium on Transport Phenomena, (2017)
    [41] J. Suzuki, T. Fukue, W. Hiratsuka, H. Shirakawa, and K. Hirose, “Visualiation of heat transfer mechanism of pulsating flow around ribs mounted in rectangular duct,” The 11th Pacific Symposium on Flow Visualization and Image Processing, (2017)
    [42] Y. Wang, Y. L. He, W. W. Yang, and Z. D. Cheng, “Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow,” International Journal of Heat and Mass Transfer, 82, (2015) pp.51-65
    [43] M. Jafari, M. Farhadi, and K. Sedighi, “Pulsating flow effects on convection heat transfer in a corrugated channel: A LBM approach. International Communications in Heat and Mass Transfer,” 45, (2013) pp.146-154.
    [44] Y. Zheng, G. Li, W. Guo, and C. Dong, “Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature,” International journal Heat and Mass Transfer, 53(9), (2017) pp.1-12.
    [45] M. Rahgoshay, A. A. Ranjbar, and A. Ramiar, “Laminar pulsating flow of nanofluids in a circular tube with isothermal wall,” International Communications in Heat and Mass Transfer, 39(3), (2012) pp.463-469.
    [46] F. Selimefendigil, and H. F. Öztop, “Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid,” International Communications in Heat and Mass Transfer, 45, (2013) pp.111-121.
    [47] D. Raabe, “Overview of the lattice Boltzmann method for nano-and microscale fluid dynamics in materials science and engineering,” Modelling and Simulation in Materials Science and Engineering, 12(6), (2004) pp.R13- R46.
    [48] S. Chen, and G. D. Doolen, “Lattice Boltzmann method for fluid flows. Annual review of fluid mechanics,” 30(1), (1998) pp.329-364.
    [49] T. M. Liou, and C. S. Wang, “Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method,” Physics of Fluids, 30(1), (2018) pp.015106.
    [50] Q. Liao, and T. C. Jen, “Numerical simulation of fluid flow and heat transfer in a curved square duct by using the lattice Boltzmann method,” Numerical Heat Transfer, Part A: Applications, 54(5), (2008) pp.451-480.
    [51] M. A. Moussaoui, M. Jami, A. Mezrhab, and H. Naji, “Lattice Boltzmann simulation of convective heat transfer from heated blocks in a horizontal channel,” Numerical Heat Transfer, Part A: Applications, 56(5), (2009) pp.422-443.
    [52] Y. Liu, J. Cui, W. Li, and N. Zhang, “Effect of surface microstructure on microchannel heat transfer performance,” Journal of Heat Transfer, 133, (2011) pp. 124501.
    [53] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Physical review, 94(3), (1954) pp.511-525.
    [54] Y. H. Qian, D. D'Humières, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” Europhysics Letters, 17(6), (1992) pp.479-484.
    [55] A. Bartoloni, C. Battista, S. Cabasino, P. S. Paolucci, J. Pech, R. Sarno, and R. Benzi, “LBE simulations of Rayleigh-Benard convection on the APE100 parallel processor,” International Journal of Modern Physics C, 4(5), (1993) pp.993-1006.
    [56] D. d’Humieres, and P. Lallemand, “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions,” Complex Systems, 1(4), (1987) pp.599-632.
    [57] X. He, Q. Zou, L. S. Luo, and M. Dembo, “Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model,” Journal of Statistical Physics, 87(1), (1997) pp.115-136.
    [58] Q. Zou, X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Physics of Fluids, 9(6), (1997) pp.1591-1598.
    [59] F. P. Incropera, “Liquid cooling of electronic devices by single-phase convection,” Wiley-Interscience, (1999).
    [60] I. Gherasim, G. Roy, C. T. Nguyen, and D. Vo-Ngoc, “Experimental investigation of nanofluids in confined laminar radial flows,” International Journal of Thermal Sciences, 48(8), (2009) pp.1486-1493.
    [61] T. L. Bergman, and F. P. Incropera, “Fundamentals of heat and mass transfer,” John Wiley & Sons, (2011).
    [62] D. R. S. Raghuraman, R. T. K. Raj, P. K. Nagarajan, and B. V. A. Rao, “Influence of aspect ratio on the thermal performance of rectangular shaped micro channel heat sink using CFD code,” Alexandria Engineering Journal, 56(1), (2017) pp.43-54.
    [63] J. B. Aparecido, and R. M. Cotta, “Thermally developing laminar flow inside rectangular ducts,” International Journal of Heat and Mass Transfer, 33(2), (1990) pp.341-347.
    [64] S. Pandiyan, K. Jayakumar, N. Rajalakshmi, and K. S. Dhathathreyan, “Thermal and electrical energy management in a PEMFC stack–An analytical approach,” International Journal of Heat and Mass Transfer, 51(3), (2008) pp.469-473.
    [65] L. Wang, and F. Liu, “Forced convection in slightly curved microchannels,” International Journal of Heat and Mass Transfer, 50(5), (2007) pp.881-896.
    [66] S. W. Chang, T. M. Liou, and T. H. Lee, “Thermal performance of developing flow in a radially rotating parallelogram channel with 45 ribs,” International Journal of Thermal Sciences, 52, (2012) pp.186-204.
    [67] A. Bejan, “Convection heat transfer,” John Wiley & Sons, (2013).
    [68] A. Faghri, M. Faghri, and K. Javdani, “Effect of flow pulsation on laminar heat transfer between two parallel plates,” Wärme-und Stoffübertragung, 13(1-2), (1980) pp.97-103.

    QR CODE