研究生: |
劉怡君 Yi-Chun Liu |
---|---|
論文名稱: |
利用樹狀體靜電錯合與液晶定向技術建構DNA有序奈米結構 Ordered DNA Nanostructures from Electrostatic Complexation with Dendrimer and Liquid Crystal Rubbing Techniques |
指導教授: |
陳信龍
Hsin-Lung Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | DNA/dendrimer complexes 、DNA condensation 、pearl-chain nanowires 、rubbed polyimide film |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
DNA-based nanotechnology has been propelled by the use of DNA molecules as the building blocks or the templates for controllable nanostructures. To control the higher-level organization of DNA molecules remains to be a challenge in nanotechnology. DNA condensation induced by the presence of multivalent cations is considered as an approach to attain ordered DNA structures.
In this study, PAMAM dendrimer was used as the condensing agent. The self-assembly behavior of the complexes of DNA with fully surface-protonated poly(amidoamine) (PAMAM) dendrimer of generation four as a function of the overall complex composition. The complex composition (x) was expressed by the molar ratio of the positively charged ammonium groups in the dendrimer to the DNA base pairs. The complexation was found to result in DNA condensation through which the dendrimer-bound DNA chains aggregated significantly to form ordered structures. A condensed nematic phase in which the locally oriented DNA chains did not exhibit coherent positional order formed at x = 2. Although the numbers of positive and negative charges were identical at this composition, the charge matching was frustrated by the DNA-DNA repulsion which limited the number of DNA chains surrounding each dendrimer molecule. Therefore, the nematic mesophase was built up by the irregularly packed square columnar cells (with each dendrimer molecule surrounded by four DNA chains in each cell), yielding defective DNA networks with the average interhelical distance of 4.2 nm. A significant fraction of the phosphate groups on the DNA chains in the network remained unbound to the dendrimer due to limited supply of dendrimer molecules. The condensed DNA structure transformed into a long-range ordered square columnar phase with the interhelical distance of 4.25 nm at x = 4.0. Here the number of dendrimer became abundant enough to maximize the charge matching for the DNA chains, and the interconnection of the square columnar unit cells led to a long-range ordered lattice.
We also demonstrate the coupling between the phenomenon of DNA condensation and the concept of DNA-templated NP assembly to prepare spatially organized nanowires with pearl-chain morphology. Electrostatic complexation of gold NP-embedded dendrimers with DNA brought about the condensation of the dendrimer on DNA and a spontaneous aggregation and ordering of the DNA chains, yielding nanowires with nematic order in thin film and bulk state. The present study revealed a bio-templating approach for fabricating nanostructured materials exhibiting special properties.
Finally, a highly ordered dense DNA array on rubbed polyimide film was prepared. AFM images showed two-dimensional dense arrays for both linear and calf thymus DNA. We attributed the ordering to be driven by the condensation of DNA on rubbed polyimide. However, only DNA molecules on polyimide film within ca. 1.0 nm in thickness could be aligned. DNA molecules distant from the interface could hardly be affected by the rubbed polyimide. In addition to stretched DNA molecules on the substrate, DNA bundles were also visible. These DNA bundles were mechanically stronger and they could provide more binding and nucleation sites for the assembly of NPs toward nanowire structure.
1. Manning, G. S. Quart. Rev. Biophys. 1978, 11, 179.
2. Record, M. T.; Mazur, S. J.; Melancon, P.; Roe, J. H.; Shaner, S.; Unger, L. Annu. Rev. Biochem., 1981, 50, 997.
3. Sharp, K.; Honig, B. Annu. Rev. Biophys. Biophys. Chem., 1990, 19, 301.
4. Bloomfield, V. A. Biopolymers 1991, 31, 1471.
5. Andreasson, B; Nordenskiöld, L.; Schultz, J. Biophys.J. 1996, 70,2847.
6. Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler, R.; Tomalia, D. A.; Baker, J. R. Proc. Matl. Acad. Sci. USA, 1996, 93, 4897
7. Haensler, J.; Szoka, F. Bioconjug Chem. 1993, 4, 372-379
8. Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev.1996, 20, 221
9. Miller, A.D. Angew. Chem. Int. Ed. 1998, 37, 1768
10. Braun,E.;Eichen,Y.;Sivan,U.;Ben-Yoseph,G. Nature 1998, 391,775
11. Richter, J. Physica E, 2003, 16, 157-173
12. Patolsky,F.;Weizmann,Y.;Lioubashevski,O.;Willner,I. Angew. Chem. Int. Ed. Engl, 2002, 41,2323
13. Sastry, M.; Kumar, A.; Datar, S. S.; Dharmadhikari, C. V.; Ganesh, K. N. Appl. Phys. Lett. 2001, 78, 2943
14. Kumar, A.; Pattarkine, M.; Bhadbhade, M.; Mandale, A. B.; Ganesh, K. N.; Datar, S. S.; Dharmadhikari, C. V. ; Sastry, M. Adv. Mater. 2001, 13, 341–344.
15. Warner, M. G..; Hutchison, J. E. Nat. Mater. 2003, 2, 272-277.
16. Buhleier, E.; Wehner,W.; Vögtle, F. Synthesis, 1978, 155.
17. Maciejewski, M. Macromol. Sci. Chem., 1982, A17, 689.
18. deGennes, P. G.; Hervet, H. J. J. Phys. Lett. (Paris) 1983, 44:L351-L360.
19. Tomalia, D. A. ;Baker, H.; Dewald, J. ; Hall, M.; Kallos, G..; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J., Tokyo, 1985, 17,117
20. Newkome, G. R.; Yao, Z.-Q.; Baker, G.. R.; Gupta, V. K. J. Org. Chem., 1985, 50, 2003
21. Hawker, C.J.; Fréchet, J.M.J. J. Chem. Soc. Chem. Commun. 1990,1010
22. Miller, T. M.; Neenan, T. X. Chem.Mat.,1990, 2, 346-9
23. Newkome, G.. R. Advances in Dentritic Macromolecules, JAI Press: Greenwich, CT, 1993.
24. Fréchet, J.M.J.; Tomalia, D. A. ”Dendrimers and Other Dendritic polymers”, John Wiley & Sons, Ltd, 2001, 23
25. Lothian-Tomalia, M. K.; Hedstrand, D. M. ; Tomalia, D. A. ; Padia, A. B. ; Hall, Jr. H. K. Tetrahedron, 1997, 53(45), 15495-15513
26. Higgins, J.S.; Benoĩt, H.C. Polymers and Neutron Scattering, Clarendon Press, Oxford, 1994
27. Prosa, T. J.; Bauer, B. J. ; Amis, E. J. Macromolecules, 2001, 34, 4897
28. Brothers II,H.M.; Piehler, L.T.; Tomalia, D.A. J.Chromatogr.,1998, A814, 233
29. Singh, P. Bioconjugate Chem., 1998, 9.54
30. Piotti, M. E.; Rivera, F.; Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc.,1999,121,9471
31. Liu, M.; Fréchet, J. M. J. Pharmaceut. Sci. Technol. Today, 1999, 2, 393
32. Zeng, F.; Zimmerman, S. C. Chem.Rev.1997, 97,1681
33. Bieniarz, C. Dendrimers: Applications to pharmaceutical and Medicinal Chemistry,1998, 18, 55
34. Stark, B.;Lach, C.;Frey, H.;Stuhn, B. Macro. Symp. 1999,146, 33
35. Stathatos, E. ; Lianos, P. ; Strangar, U. L. ; Orel, B. ; Judeinstein, P. Lanmuir 2000, 16, 8672
36. OttaViani, M. F. ; Bossmann, S. ; Turro, N. J. ; Tomalia, D. A. J. of the Amer. Chem. Soc. 1994, 116, 661
37. Grőhn, F.; Bauer, B. J. ; Akpalu, Y. A. ; Jackson, C. L. ; Amis, E. J. Macromolecules 2000, 33, 6042-6050
38. Esumi, K.; Isono, R.; Yoshimura, T. Langmuir 2004, 20, 237-243.
39. Hovestad, N. J.; Hoare, J. L.; Jastrzebski, J. T. B. H.; Canty, A. J.; Smeets, W. J. J.; Spek, A. L.; van Koten, G.. Organometallics 1999, 18(16), 2970-2980.
40. Zhang, C.; O'Brien, S.; Balogh, L. Journal of Physical Chemistry B, 2002, 106(40), 10316-10321.
41. Sooklal, K.; Hanus, L. H.; Ploehn, H. J.; Murphy, C. J. Adv. Mater. 1998, 10, 1083-1087
42. Strable, E.; Bulte, J. W. M.; Moskowitz, B.; Vivekanandan, K.; Allen, M.; Douglass, T. Chem. Mater. 2001, 13, 2201-2209
43. Zhao, M. Q. ; Tokuhisa, H. ; Crooks, R. M. Angewandte Chemie-International Ed.,1997, 35, 2596
44. Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker J. R. Jr. Biochim. Biophys. Acta, 1997, 1353, 180-190.
45. Baeza, I.; Gariglio, P.; Rangel, L. M.; Chavez, P.; Cervantes, L. ; Arguello, C.; Wong, C.; Montanez, C. Biochemistry 1987, 26, 6387-6392.
46. Gosule, L. C.; Schellman, J. A. Nature 1976, 259, 333-335.
47. Zimmerman, S. B.; Harrison, B. Proc. Natl. Acad. Sci. U.S.A 1987, 84, 1871-1875
48. Matthews, H. R. Bioessays 1993, 15, 561-566.
49. Oller, A. R.; Vanden, B. W.; Conrad, M.; Topal, M. D. Biochemistry 1991, 30, 2543-2549.
50. Post, C. B.; Zimm, B. H. Biopolymers 1982, 21, 2139-2160.
51. Celano, P.; Baylin, S. B.; Casero, R. A. Jr. J. Biol. Chem. 1989, 264, 8922-8927.
52. Bielinska, A.U.; Kukowska-Latallo, J.F.; Johnson, J.; Tomalia, D. A.; Baker, J. R. Jr. Nucleic Acids Res. 1996, 24, 2176-2182.
53. Raczka, E.; Kukowska-Latallo, J. F.; Rymaszewski, M.; Chen, C.; Baker, J. R. Jr. Gene Ther.1998, 5, 1333-1339.
54. Tang, M.; Redemann, C. T.; Szoka, F. C. Jr. Bioconjugate Chem. 1996, 7, 703-714.
55. Rau, D. C.; Parsegian, V. A. Biophys. J. 1992, 61, 246-259
56. Bielinska, A. U.; Chen, C.; Johnson, J.; Baker, J. R. Jr. Bioconj. Chem., 1999, 10, 843-850
57. Berliner L. J.; Reuben, J. Eds. Biological Magnetic Resonance. Spin Labeling, Theory and Applications; Plenum Press: New York, 1989; Vol. 8.
58. Ottaviani, M. F.; Sacchi, B.; Turro, N. J.; Chen, W.; Jockusch, S.; Tomalia, D. A. Macromolecules ,1999, 32, 2275-2282
59. Ottaviani, M. F.; Furini, F.; Casini, A.; Turro, N. J.; Jockusch, S.; Tomalia, D. A.; Messori, L. Macromolecules 2000, 33, 7842-7851
60. Chen, W.; Turro, N. J. ; Tomalia, D. A. Langmuir 2000, 16, 15-19
61. Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1984
62. LePecq, J.-B.; Paoletti, C. J. Mol. Biol. 1967, 27, 87.
63. Jones, R. L.; Lanier, A. C.; Keel, R. A.; Wilson, W. D. Nucleic Acids Res. 1980, 8, 1613.
64. Evans, H. M. ; Ahmad, A.; Ewert, K. ; Pfohl,T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R. Phys Rev Lett, 2003, 91,7,075501-1
65. Mitra, A.; Imae, T. Biomacromolecules 2004, 5, 69-73
66. Maeda, Y.; Matsumoto, T.; Kawai, T. Appl. Surf. Sci. 1999, 140,400.
67. Prosa, T. J.; Bauer, B. J.; Amis, E. J. Macromolecules 2001, 34, 4897.
68. Tomalia, D. A.; Hall, M.; Hedstrand, D. M. J. Am. Chem. Soc.1987, 109, 1601.
69. Bielinska, A. U.; Chen, C.; Johnson, J.; Baker, J. R., Jr. Bioconjugate Chem. 1999, 10, 843.
70. Shchepinov, M. S.; Udalova, I. A.; Bridgman, A. J.; Southern, E. M. Nucleic Acid Res. 1997, 25, 4447.
71. Bielinska, A. J. Polym. Mater. Sci. Eng. 1995, 73, 273.
72. Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J.-P. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 7297.
73. Tang, M.; Redemann, C. T.; Szoka, F. C., Jr. Bioconjugate Chem. 1996, 7, 703.
74. Haensler, J.; Szoka, F. C., Jr. Bioconjugate Chem. 1993, 4, 372.
75. Ottaviani, M. F.; Sacchi, B.; Turro, N. J.; Chen, W.; Jockusch, S.; Tomalia, D. A. Macromolecules 1999, 32, 2275.
76. Ottaviani, M. F.; Furini, F.; Casini, A.; Turro, N. J.; Jockusch, S.; Tomalia, D. A.; Messori, L. Macromolecules 2000, 33, 7842.
77. Chen, W.; Turro, N. J.; Tomalia, D. A. Langmuir 2000, 16, 15.
78. Stryer, L. Biochemistry; W.H. Freeman and Company: San Francisco, 1981.
79. Evans, H. M.; Ahmad, A.; Ewert, K.; Pfohl, T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R. Phys. Rev. Lett. 2003, 91, 7, 075501-1.
80. Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. Langmuir 2000, 16, 9577.
81. Cakara, D.; Kleimann, J.; Borkovec, M. Macromolecules 2003, 36, 4201.
82. Chen, W.; Tomalia, D. A.; Thomas, J. L. Macromolecules 2000, 33, 9169.
83. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, 1989.
84. Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science; Oxford University Press: New York, 2000.
85. Tsuboi, A.; Izumi, T.; Hirata, M.; Xia, J.; Dubin, P. L.; Kokufuta, E. Langmuir 1996, 12, 6295.
86. Takahashi, D.; Kubota, Y.; Kokai, K.; Izumi, T.; Hirata, M.; Kokufuta, E. Langmuir 2000, 16, 3133.
87. Record, M. T., Jr.; Anderson, C. F.; Lohman, T. M. Q. Rev. Biophys. 1978, 11, 103.
88. Park, S.Y.; Bruinsma, R. F.; Gelbart, W. M. Europhys. Lett. 1999, 46, 454.
89. Bruinsma, R. Eur. Phys. J. B 1998, 4, 75.
90. Knaapila, M.; Stepanyan, R.; Horsburgh, L. E.; Monkman, A. P.; Serimaa, R.; Ikkala, O.; Subbotin, A.; Torkkeli, M.; ten Brinke, G. J. Phys. Chem. B 2003, 107, 14199.
91. Podgornik, R.; Rau, D. C.; Parsegian, V. A. Macromolecules 1989, 22, 1780.
92. Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A. Angew. Chem., Int. Ed. Engl. 1990, 29, 138.
93. Mu¨ ller, J. J. J. Appl. Crystallogr. 1983, 16, 74.
94. Hagerman, P. J. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 265.
95. Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978.
96. Beverly, K. C.; Sampaio, J. F.; Heath, J. R. J. Phys. Chem. B 2002, 106, 2131.
97. Destefani, C. F.; Marques, G. E. Physica E 2000, 7, 786.
98. Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775.
99. Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Adv. Mater. 1999, 11, 253.
100. Dieluweit, S.; Pum, D.; Sleytr, U. B. Supramol. Sci. 1998, 5 (1-2), 15.
101. Mertig, M.; Kirsch, R.; Pompe, W.; Wahl, R.; Bo¨hm, K. J.; Unger, E.; Sadowski, G. Thin Solid Films 1997, 305, 248.
102. Coffer, J. L.; Bigham, S. R.; Li, X.; Pinizzotto, R. F.; Rho, Y. G.; Pirtle, R. M.; Pirtle, I. L. Appl. Phys. Lett. 1996, 69, 3851.
103. Kumar, A.; Pattarkine, M.; Bhadbhade, M.; Mandale, A. B.; Ganesh, K. N.; Datar, S. S.; Dharmadhikari, C. V.; Sastry, M. Adv. Mater. 2001, 13, 341.
104. Sastry, M.; Kumar, A.; Datar, S. S.; Dharmadhikari, C. V.; Ganesh, K. N. Appl. Phys. Lett. 2001, 78, 2943.
105. Warner, M. G.; Hutchinson, J. E. Nat. Mater. 2003, 2, 272.
106. Grohn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J. Macromolecules 2000, 33, 6042.
107. Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120 (19), 4877.
108. Esumi, K.; Isono, R.; Yoshimura, T. Langmuir 2004, 20, 237.
109. Zhang, C.; O’Brien, S.; Balogh, L. J. Phys. Chem. B 2002, 106 (40),10316.
110. Evans, H. M.; Ahmad, A.; Ewert, K.; Pfohl, T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R. Phys. Rev. Lett. 2003, 91 (7),075501-1.
111. (a) Friedel, G. Ann. Phys. (Paris) 1922, 18, 273. (b) Nehring, J.; Saupe, A. J. Chem. Soc., Faraday Trans. 2 1972, 68, 1. (c) Saupe, A. Mol. Cryst. Liq. Cryst. 1973, 21, 211.
112. Swanson, T. JCPDS ICDD 04-0784, 1953.
113. Leng, M.; Felsenfeld, G. Proc. Natl. Acad. Sci. U.S.A. 1966, 56, 1325.
114. Moreno-Herrero, F.; Colchero, J.; Baro, A. M. Ultramicroscopy 2003, 96, 167.
115. Zhang, J.; Ma, Y.; Stachura, S.; He, H. Langmuir 2005, 21, 4180.
116. Michalet, X.; Ekong, R.; Fougerousse, F.; Rousseaux, S.; Schurra, C.; Hornigold, N.; van Slegtenhorst, M.; Wolfe, J.; Povey, S.; Beckmann, J. S.; Bensimon, A. Science 1997, 277, 1518.
117. Yokota, H.; Johnson, F.; Lu, H.; Robinson, R. M.; Belu, A. M.; Garrison, M. D.; Ratner, B. D.; Trask, B. J.; Miller, D. L. Nucleic Acids Res. 1997, 25, 1064.
118. Nakao, H.; Hayashi, H.; Yoshino, T.; Sugiyama, S.; Otobe, K.; Ohtani, T. Nano Lett. 2002, 2, 475.
119. Deng, Z.; Mao, C. Nano Lett. 2003, 3, 1545.
120. Li, J.; Bai, C.; Wang, C.; Zhu, C.; Lin, Z.; Li, Q.; Cao, E. Nucleic Acids Res. 1998, 26, 4785.
121. Mauguin, C. Bull. Soc. fr. Miner. 1911, 34, 71-76
122. Depp, S.W.; Howard, W. E. Scient. Am.1993, 268, 90-97
123. Berreman, D. W. Phys. Rev. Lett. 1972, 28, 1683-1686
124. Zhu, Y. M.; Wang, L.;Lu, Z. H.;Wei,Y.; Chen, X. X.; Tang, J.H. Appl. Phys. Lett. 1994, 65, 49-51
125. Ishihara, S.; Wakemoto, H.; Nakazima, K.; Matsuo, Y. Liq. Cryst. 1989, 4, 669
126. Lee, E. S.; Miyashita, T.; Uchida, T. Jpn. J. Appl. Phys. 1993, 32, L1339
127. Lee, E. S.; Saito, Y.; Uchida, T. Jpn. J. Appl. Phys. 1993, 32, L1822
128. Barmentlo, M.; van Aerle, N.A.J.M.; Hollering, R.W.J.; Damen, J. P.M. J. Appl. Phys. 1992, 71, 4799
129. Nakao, H.; Hayashi, H.; Yoshino, T.; Sugiyama, S.; Otobe, K.; Ohtani, T. Nano letters 2002, 2(5), 475-479
130. Geary, J. M.; Goodby, J. W.; Kmetz, A. R.; Patel, J. S. J. Appl. Phys.1987, 62, 4100
131. Aoyama, H.; Yamazaki, Y.; Matsumura, N.; Mada, H.; Kobayashi, S. Mol. Cryst. Liq. Cryst. 1981, 72, 127
132. Van Aerle, N. A. J. M.; Barmentlo, M.; Hollering, R. W. J. J. Appl. Phys. 1993, 74, 3111-3120
133. Han, K. Y.; Vetter, P.; Uchida, T. Jpn. J. Appl. Phys. 1993, 32(9A), L1242-L1244
134. Toney, M. F.; Russell, T. P.; Logan, J. A.; Kikuchi, H.; Sands, J. M.; Kumar, S. K. Nature 1995, 374, 709-711
135. Murata, M.; Yoshida, E.; Uekita, M.; Tawada, Y. Jpn. J. Appl. Phys. 1993, 32, L676-L678
136. Thomas, E. A.; Zupp, T. A.; Fulghum, J. E.; Fredley, D. S.; West, J. L. Mol. Cryst. Liq. Cryst. 1994, 250, 193-208
137. Seo, D. S.; Muroi, K.; Isogami, T.; Matsuda, H.; Kobayashi, S. Jpn. J. Appl. Phys. 1992, 31, 2156
138. Sakamoto, K.; Arafune, R.; Ito, N.; Ushioda, S.; Suzuki, Y.; Morokawa, S. Jpn. J. Appl. Phys. 1994, 33, L1323-L1326
139. Hirosawa, I.; Sasaki, N.; Kimura, H. Jpn. J. Appl. Phys. 1999, 38, L583-L585
140. Wei, X.; Zhuang, X.; Hong, S. C.; Goto, T.; Shen, Y. R. Phys. Rev. Lett. 1999, 82, 4256
141. Stőhr, J.; Samant, M.G..; Cossy-Favre, A.; Diaz, J.; Momoi,Y.; Odahara, S.; Nagata, T. Macromolecules 1998, 31, 1942
142. Lee, K.W.; Paek, S. H.; Lien, A.; Durning, C.; Fukuro, H. Macromolecules 1996, 29, 8894-8899
143. Lee, S.W.; Chae, B.; Lee, B.; Choi, W.; Kim, S. B.; Kim, S.I.; Park, S. M.; Jung, J.C.; Lee, K. H.; Ree, M. Chem. Mater. 2003, 15, 3105
144. Moreno-Herrero, F. ; Colchero, J. ; Baro, A. M. Ultramicroscopy 2003, 96, 167-174
145. Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441-449
146. Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M. Science, 2001, 291, 630
147. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M.; Nano Lett. 2003, 3,1255
148. Uchida, T.; Hirano, M.; Sakai, H. Liq. Cryst. 1989, 5, 1127