簡易檢索 / 詳目顯示

研究生: 施雷亞
Shreyas Karishetty
論文名稱: 氮化鋁壓電式微機電加速規之介面電路與振動監測模組開發
Aluminium-Nitride based Piezoelectric MEMS Accelerometer Interface Circuit and Module Realization for Vibration Monitoring
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 邱一
Yi, Chiu
方維倫
Fang, Wei-Leun
盧向成
Lu, Shiang-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 63
中文關鍵詞: 壓電振動靈敏度電壓放大器振動台系統噪聲底
外文關鍵詞: LTSpice, Shaker system, Noise floor
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項工作展示了基於氮化鋁的壓電加速度計及其基於電壓放大器配置的介面電路,用於振動監
    測系統。從微小到宏觀尺度的振動,在系統、設備或機器的構成中都起著重要作用,因此檢測
    和早期診斷有助於預防性維護。為了實現這一點,開發一個整合性振動監測模組是必要的。在
    這項工作中,實現了兩種不同類型的樑設計,並使用 COMSOL Multiphysics 進行有限單元模
    擬。為了對它們的靈敏度性能進行公平比較,z 軸頻率保持在相同的 28kHz,傳統設計的靈敏
    度為 1.3mV/g,而雙樑設計達到了 2.2mV/g。
    該加速度計是通過內部製程實現的,製造的佈局使用 L-Edit 軟件設計,其中所有外部電極相
    互連接,所有內部電極也相互連接,並有一個接地電極。製造的設備釋放後,其 z 軸模式被
    實現,並使用 LDV 測量觀察到共振頻率。壓電加速度計的介面電路通常有兩種結構,即電荷
    放大器和電壓放大器。在這項工作中,介面電路的實現是使用電壓放大器,設計的電壓放大器
    分為單電源結構和雙電源結構。電路設計是使用 LTSpice 軟件進行的,並通過分析交流和瞬
    態響應來模擬增益和帶寬,模擬了增益為 100、頻寬下限為 40Hz、上限為 14.2kHz 的情況。
    為進行實際驗證,在印刷電路板上實現了兩種電壓放大器模式,並使用示波器和鎖相放大器進
    行測量,以驗證模擬結果。
    MEMS 和單電源放大器配置的介面電路一起連接在 PCB 上,使用振動台測量系統測量
    其性能,在不同的 g 值下線性獲得模組的輸出靈敏度為 12.22mV/g。使用黏土增加模
    組的剛性,將共振峰從 1kHz 移至 2kHz。使用信號分析儀分析噪聲底,獲得噪聲底值
    為 70.6dBm 或 295μg/√Hz。
    基於 AlN 的壓電加速度計和介面電路的開發已通過不同的測量方法進行了實現、模擬
    和驗證。


    This work presents the realization of Aluminium Nitride based piezoelectric accelerometer and
    interface circuit based on voltage amplifier configuration for vibration monitoring system,
    vibration for small micro scale to macro can play a major role in the composure of a system,
    device or machine, thus detection and early diagnosis help in preventive maintenance. To
    realise this development of a compact vibration monitoring module is required. In this work
    two different types of beam design are realised and finite element simulation is carried out
    using COMSOL Multiphysics, to have a fair comparison between their sensitivity
    performances the z-axis frequency is kept same at a value of 28𝑘𝐻𝑧 with sensitivity of
    conventional at 1.3𝑚𝑉/𝑔 and a value of 2.2𝑚𝑉/𝑔 is obtained for the dual beam design.
    The designed accelerometer is realised by the in-house fabrication process, the layout for the
    fabrication is designed using L-Edit software, where all the external electrodes and connected
    together and all the inner electrodes are connected together and an electrode for connecting the
    ground. The fabricated devices are released and their z-axis mode is realised and resonance
    frequency is observed using LDV measurement. The interface circuit for piezoelectric
    accelerometer is generally of two topologies, which are charge and voltage amplifier. In this
    work the interface circuit realisation is done using the voltage amplifier topology, the designed
    voltage amplifier is of two types which are single supply topology and dual supply topology.
    The design of the circuits is done using LTSpice software and simulation for gain of 100 and
    bandwidth of lower cut-off value of 40𝐻𝑧 and higher cut-off value of 14.2𝑘𝐻𝑧 is performed
    by analysing AC and transient response, to have practical verification, the two voltage amplifier
    modes are realised on printed circuit board and measurement results using oscilloscope and
    Lock-In is done to verify the simulation results. The MEMS and interface circuit with single
    supply amplifier configuration together is connected on PCB and their performance is
    measured using shaker measurement system with output sensitivity of 12.22𝑚𝑉/𝑔 of the
    module is obtained linearly under different g. The implement of clay is done to add more
    rigidity to the module which shifts the resonance peak from 1𝑘𝐻𝑧 to 2𝑘𝐻𝑧. The noise floor is
    analysed using the signal analyser which provide the noise floor value of 70.6𝑑𝐵𝑚 or
    295𝜇𝑔/√𝐻𝑧 is obtained.
    The development of AIN based piezoelectric accelerometer and interface circuit is realised and
    simulated and verified using different measurement approach.

    CHAPTER 1 INTRODUCTION ............................................................................................ 1 1.1 Background and Motivation ............................................................................................. 1 1.1.1 Industrial Revolution and Industry 4.0 ...................................................................... 1 1.1.2. Micro-Electro Mechanical Systems .......................................................................... 2 1.2 Vibration Sensing and Monitoring System ...................................................................... 4 1.2.1 Vibration, Vibration Sensors and Overview.............................................................. 4 1.2.2 Accelerometers and Applications .............................................................................. 6 1.2.3 Different types of Accelerometer Transduction ........................................................ 8 1.3 Thesis Overview ............................................................................................................. 10 CHAPTER 2 PIEZOELECTRIC MEMS AND DESIGN ................................................. 11 2.1 Piezoelectricity ............................................................................................................... 11 2.1.1 Historic Importance of Piezoelectric Effect ............................................................ 11 2.1.2 Piezoelectric Transduction ...................................................................................... 12 2.1.3 Piezoelectric Material Properties ............................................................................. 13 2.2 Piezoelectric Accelerometers ......................................................................................... 14 2.2.1 Piezoelectric Accelerometer Actuation Mechanism ................................................ 14 2.2.2 Accelerometer Design types .................................................................................... 17 2.3 Accelerometer Design .................................................................................................... 19 2.3.1 Conventional Design ............................................................................................... 19 2.3.2. Dual Beam Design .................................................................................................. 22 2.3.3. Layout of Designed accelerometer ......................................................................... 27 2.4 Fabrication Process Flow ............................................................................................... 27 CHAPTER 3 INTERFACE CIRCUIT ................................................................................ 32 3.1 Charge Amplifier............................................................................................................ 29 3.2.1 Voltage Amplifier .................................................................................................... 30 3.2.2 IC and Selection Criteria ......................................................................................... 32 3.2.3 Voltage Amplifier design with LTC6244 ................................................................ 33 3.2.4 Amplifier Verification with Oscilloscope and Lock-In ........................................... 39 CHAPTER 4 MEASUREMENT AND RESULTS ............................................................. 46 4.1 LDV (Laser Doppler Vibrometer) Measurement ........................................................... 46 4.2 Shaker System Measurement ......................................................................................... 48 vi 4.3 Noise Floor Analysis using Spectrum Analyser ............................................................ 58 CHAPTER 5 CONCLUSION AND FUTURE WORK ...................................................... 60 5.1 Conclusion ...................................................................................................................... 60 5.2 Future Work ................................................................................................................... 60 REFERENCE ......................................................................................................................... 64

    [1] C. H. Leng, C. Ruffert, and L. Rissing, “Investigations on Micromolds for Dispensing Low Viscosity Epoxies for MEMS Applications,” ECS Trans., vol. 33, no. 34, pp. 81–92, Mar. 2011, doi: 10.1149/1.3573590.
    [2] A. Mouapi, G. Vanessa Kamani, N. Hakem, and N. Kandil, “Multiphysics Simulation of Piezoelectric Cantilever Beam: Application in Automobile,” Mod. Environ. Sci. Eng., vol. 3, no. 01, pp. 35–44, Jan. 2017, doi: 10.15341/mese(2333-2581)/01.03.2017/005.
    [3] A. Albarbar, S. Mekid, A. Starr, and R. Pietruszkiewicz, “Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study,” Sensors, vol. 8, pp. 784–799, 2008, [Online]. Available: www.mdpi.org/sensors
    [4] P. Singh, P. Gupta, P. Srivastava, M. Goswami and B. R. Singh, "Design and analysis of high resonant frequency (1 MHz) MEMS accelerometer," 2013 Students Conference on Engineering and Systems (SCES), Allahabad, India, 2013, pp. 1-5, doi: 10.1109/SCES.2013.6547581.
    [5] S. Shi et al., “High Sensitivity MEMS Accelerometer Using PZT-Based Four L-Shaped Beam Structure,” IEEE Sens. J., vol. 22, no. 8, pp. 7627–7636, Apr. 2022, doi: 10.1109/JSEN.2022.3155407.
    [6] Y. H. Wang et al., “A paper-based piezoelectric accelerometer,” Micromachines, vol. 9, no. 1, Jan. 2018, doi: 10.3390/mi9010019.
    [7] M. A. Ansari and P. Somdee, “Piezoelectric Polymeric Foams as Flexible Energy Harvesters: A Review,” Sep. 01, 2022, John Wiley and Sons Inc. doi: 10.1002/aesr.202200063.
    [8] Q. Zou, W. Tan, E. S. Kim, and G. E. Loeb, “Highly Symmetric Tri-axis Piezoelectric Bimorp h Accelerometer.”
    [9] S. Trivedi, R. H. Ganesh, T. Shen, P. W. Huang, and S. S. Li, “Piezoelectric MEMS Vibration Sensor Module for Machining Quality Prediction,” Proc. IEEE Sensors, vol. 2020-October, no. c, pp. 1–4, 2020, doi: 10.1109/SENSORS47125.2020.9278649.
    [10] H. Takao, Y. Matsumoto, and M. Ishida, “SEf@RS ACT~JA~ORS ELSEVIER A Stress-sensitive differential amplifiers using piezoresistive effects of MOSFETs and their application to three-axial accelerometers,” 1998.
    [11] C. Y. Li et al., “Design of a Square MEMS Piezoelectric Accelerometer With a Wide Range of Applicability, a Low Transverse Sensitivity Ratio, and High Accuracy,” IEEE Sens. J., vol. 22, no. 10, pp. 9306–9312, May 2022, doi: 10.1109/JSEN.2022.3161671.
    [12] B. Tian, H. Liu, N. Yang, Y. Zhao, and Z. Jiang, “Design of a piezoelectric accelerometer with high sensitivity and low transverse effect,” Sensors (Switzerland), vol. 16, no. 10, Oct. 2016, doi: 10.3390/s16101587.
    [13] F. Gerfers, M. Kohlstadt, H. Bar, M.-Y. He, Y. Manoli, and L.-P. Wang, “SUB-µg Ultra-Low-Noise MEMS Accelerometer based On CMOS-Compatible piezoelectric AlN thin films.”

    [14] Z. H. Chen et al., “The Design of Aluminum Nitride-Based Lead-Free Piezoelectric MEMS Accelerometer System,” IEEE Trans. Electron Devices, vol. 67, no. 10, pp. 4399–4404, 2020, doi: 10.1109/TED.2020.3019230.
    [15] Z. Hou, G. Liu, T. Miao, J. Feng, D. Xiao, and X. Wu, “A Double Differential Torsional Accelerometer With Higher Than 10-kHz Measurement Bandwidth for Vibration Monitoring,” IEEE Sens. J., vol. 23, no. 11, pp. 11437–11443, 2023, doi: 10.1109/JSEN.2023.3265690.
    [16] T. Starecki, “Analog Front-End Circuitry in Piezoelectric and Microphone Detection of Photoacoustic Signals,” Int. J. Thermophys., vol. 35, no. 11, pp. 2124–2139, 2014, doi: 10.1007/s10765-014-1715-0.
    [17] A. Daisy Rani and P. Swapna, “Design considerations of mems piezoelectric accelerometers,” Int. J. Sci. Technol. Res., vol. 9, no. 3, pp. 4530–4534, 2020.
    [18] Brüel & Kjær, “Piezoelectric Accelerometers,” October, p. 2, 2020, [Online]. Available: https://www.bksv.com/en/products/transducers/vibration/Vibration-transducers/accelerometers/4520
    [19] M. P. Accelerometer, “A Novel Trapezoidal ScAlN / AlN-Based,” vol. 21, no. 19, pp. 21277–21284, 2021.
    [20] N. Maluf, “An introduction to MEMS engineering,” vol. 53, no. 9, pp. 2–4, 2004.
    [21] W. S. You, “Op-amp design to work from a single voltage power supply , but the change in performance demystifying single-supply op-amp design,” Change, 2002.
    [22] H. Zhou, R. H. Han, M. H. Xu, and H. Guo, “Study of a piezoelectric accelerometer based on d33 mode,” Proc. 2016 Symp. Piezoelectricity, Acoust. Waves Device Appl. SPAWDA 2016, pp. 61–65, 2017, doi: 10.1109/SPAWDA.2016.7829957.
    [23] J. C. Yu and C. Bin Lan, “System modelling and robust design of microaccelerometer using piezoelectric thin film,” IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst., no. August, pp. 99–104, 1999, doi: 10.1109/mfi.1999.815972.
    [24] K. Blake, “Op Amp Precision Design: PCB Layout Techniques,” Technology, vol. 1258, pp. 1–20, 2009, [Online]. Available: http://www.t-es-t.hu/download/microchip/an1258b.pdf.
    [25] M. Tahmasebipour and A. Vafaie, “A Highly Sensitive Three Axis Piezoelectric Microaccelerometer for High Bandwidth Applications,” Micro Nanosyst., vol. 10, no. January, 2018, doi: 10.2174/1876402910666180118124845.
    [26] B. R. Mancini, “Amplifiers : Op Amps Single-supply op amp design,” Design, no. November, pp. 20–23, 1999.

    QR CODE