簡易檢索 / 詳目顯示

研究生: 陳羿宇
Chen, Yi-Yu
論文名稱: 發展高偵測範圍之非酵素乳酸感測器
Development of non-enzymatic lactic acid sensor for high- detections range
指導教授: 王翔郁
Wang, Hsiang-Yu
口試委員: 王本誠
Wang, Pen-Cheng
廖英志
Liao, Ying-Chih
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 氧化鎳奈米顆粒乳酸乙醇葡萄糖網版印刷電化學感測器pH感測器乳酸感測器非酵素感測器
外文關鍵詞: nickel oxide nanoparticles, lactic acid, ethanol, glucose, screen-printing, electrochemical sensor, pH sensor, lactic acid sensor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自古以來,發酵製程所生產的產品不勝枚舉,例如保養品、藥品、化學品和健康食物等,然而在實驗室規模或工業下,要優化現有製程或篩選菌種卻非常浪費時間、人力和金錢,因此為了減少勞動力和成本消耗,現今常利用微流體系統作為培養及分析的工具。未經處理的發酵液中含有多種成分,例如酵母菌的發酵液中含有琥珀酸、丙酮酸、乳酸等成分,故通常使用高效液相色譜法(high performance liquid chromatography, HPLC)作為成分分析的工具,對於微流體培養系統而言,由於其樣品量少,要利用HPLC作成分分析相當具有挑戰性。
    本研究的重點在於開發可用於微流體發酵系統且具有快速和大偵測範圍的微型感測器整合系統,用於偵測代謝產物(如乳酸、乙醇)、營養源(葡萄糖)和環境pH值。本研究利用氧化鎳奈米顆粒修飾電極檢測代謝產物和營養源;利用氧化銥薄膜電極檢測環境pH值,上述氧化鎳奈米粒子及氧化銥薄膜修飾於金電極以及網版印刷碳電極表面,比較兩種不同電極的檢測效能。網版印刷碳電極偵測乳酸的平均靈敏度為11.74±1.05μA/mM,是金電極的2倍,兩者的線性偵測範圍皆為1 – 50mM,且在20天內的偵測表現相當穩定。網印碳電極對於乙醇亦有良好的偵測效能,檢測的線性濃度範圍為1 – 50mM、平均靈敏度為13.70±1.84μA/mM;然而,網版印刷碳電極在葡萄糖的偵測中極易被毒化,但金電極的穩定性可達17天,葡萄糖檢測的線性濃度範圍為1 – 20mM、平均靈敏度為27.09±3.04μA/mM。最後,碳印刷電極與金電極的pH檢測的線性範圍皆為pH 2 – 10、平均靈敏度皆為約54 mV/pH,穩定性可達8天。本研究中所有檢測都具有高度線性關係(R2 > 0.99)。


    Yeast fermentation products contain multiple ingredients such as succinate, pyruvate, and acetate; and high performance liquid chromatography (HPLC) is commonly applied to the monitoring of these compositions. However, applying lab-scale fermentation for optimizing the process or screening high-yield strains can be time consuming, labor intensive, and sample devouring. Microfluidic platforms are currently more favorable setups for early-stage screening and optimization. Nonetheless, the minute sample amount in microfluidic setup is challenging for HPLC analysis. Therefore, this study focuses on the development of micro-sensors for rapid and high dynamic range detections not only in performing the monitoring of the metabolic products (lactic acid, ethanol…etc.) and the substrate (glucose) but also the pH environment in the micro-scale fermentation. The micro-sensors utilized the NiONPs/GO/Nafion/Au electrode and NiONPs/GO/Nafion/SPEs for detecting metabolic products and substrates while the IrOx electrode for pH measurements. Two kinds of microelectrodes, gold and screen-printed carbon, were applied and their performance was compared. Both electrodes had a linear detection range of 1 – 50 mM for lactate detection but the sensitivity of screen-printed carbon electrode had a sensitivity of 11.74±1.05μA/mM, which was two folds higher than the gold electrode. The screen-printed electrode also had good performance in ethanol detection: the detection range was 1 – 50 mM and the sensitivity was 13.70±1.84μA/mM. However, the screen-printed carbon electrode was highly prone to poisoning in glucose detection. The gold electrode showed stable detection of ethanol and glucose in 17 days. The glucose detection had a detection range of 1 - 20mM and a sensitivity of 27.09±3.04μA/mM. Both gold and screen-printed electrodes had a linear detection range for pH value from pH 2 to pH 10 with a sensitivity of 54 mV/pH. All detections were highly linear with correlation coefficients higher than 0.99.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機與方法 2 第2章 文獻回顧 5 2.1 微生物製品 5 2.1.1 乳酸的化學合成 9 2.1.2 乳酸的發酵生產 10 2.1.3 乳酸生產條件篩選 15 2.1.4 微流體培養系統 15 2.2 乳酸感測方法 18 2.2.1 滴定法 19 2.2.2 高效液相層析法 21 2.2.3 分光光度法 22 2.2.4 毛細管電泳 24 2.2.5 電化學檢測法 26 2.3 不同產物及營養源檢測 32 2.3.1 葡萄糖檢測 32 2.3.2 乙醇檢測 33 第3章 實驗方法與材料 36 3.1 有機物感測器製備 36 3.1.1 金電極感測器製備 36 3.1.2 網版印刷(Screen-printing process)碳電極製備 41 3.2 pH感測器製備 43 3.2.1 電極製備 43 3.2.2 氧化銥薄膜修飾 44 3.2.3 電極保護層 44 3.2.4 電極保存 44 3.3 感測器分析方法 44 3.3.1 有機物感測 44 3.3.2 pH感測 46 第4章 結果與討論 52 4.1 電極設計與偵測條件篩選 52 4.1.1 電極材料選用 52 4.1.2 參考電極及電解質選用 54 4.2 金電極修飾氧化鎳奈米粒子 58 4.2.1 葡萄糖檢測 59 4.2.2 乳酸檢測 61 4.3 網印碳電極修飾氧化鎳奈米粒子 62 4.3.1 葡萄糖檢測 63 4.3.2 乙醇檢測 65 4.3.3 乳酸檢測 67 4.4 不同電極比較 68 4.4.1 商用參考電極和擬參考電極比較 68 4.4.2 金電極與網印碳電極反應電流比較 69 4.4.3 不同電極之檢測性能比較 70 4.4.4 乳酸檢測比較 72 4.4.5 電極重現性 74 4.5 發酵產物中乳酸濃度偵測 75 4.6 pH感測電極 78 4.6.1 金電極修飾氧化銥薄膜 79 4.6.2 網印電極修飾氧化銥薄膜 81 4.6.3 不同電極比較 84 第5章 結論與未來展望 86 5.1 結論 86 5.2 未來展望 87 參考文獻 88

    Abdel-Rahman, M.A., Tashiro, Y., Sonomoto, K. 2013. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31(6), 877-902.
    Adsul, M., Khire, J., Bastawde, K., Gokhale, D. 2007. Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Applied and environmental microbiology, 73(15), 5055-5057.
    Andersson, R., Hedlund, B. 1983. HPLC analysis of organic acids in lactic acid fermented vegetables. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 176(6), 440-443.
    Au, S.H., Shih, S.C.C., Wheeler, A.R. 2011. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomedical Microdevices, 13(1), 41-50.
    Barker, S.B., Summerson, W.H. 1941. The colorimetric determination of lactic acid in biological material. Journal of Biological Chemistry, 138, 535-554.
    Barthelmebs, L., Calas-Blanchard, C., Istamboulie, G., Marty, J.-L., Noguer, T. 2010. Biosensors as analytical tools in food fermentation industry. in: Bio-Farms for Nutraceuticals, Springer, pp. 293-307.
    Berchmans, S., Gomathi, H., Rao, G.P. 1998. Enzymeless approach for the determination of some biologically important species. Sensors and Actuators B: Chemical, 50(2), 156-163.
    Cao, F., Gong, J. 2012. Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles. Analytica Chimica Acta, 723, 39-44.
    Castiñeira, A., Peña, R.M., Herrero, C., Garcı́a-Martı́n, S. 2002. Analysis of Organic Acids in Wine by Capillary Electrophoresis with Direct UV Detection. Journal of Food Composition and Analysis, 15(3), 319-331.
    Castillo Martinez, F.A., Balciunas, E.M., Salgado, J.M., Domínguez González, J.M., Converti, A., Oliveira, R.P.d.S. 2013. Lactic acid properties, applications and production: A review. Trends in Food Science & Technology, 30(1), 70-83.
    Cho, C., Choi, S.Y., Luo, Z.W., Lee, S.Y. 2015. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnology Advances, 33(7), 1455-1466.
    Clark, L.C., Lyons, C. 1962. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences, 102(1), 29-45.
    Dias, A.C.B., Silva, R.A.O., Arruda, M.A.Z. 2010. A sequential injection system for indirect spectrophotometric determination of lactic acid in yogurt and fermented mash samples. Microchemical Journal, 96(1), 151-156.
    Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J., Gokhale, D. 2008. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Applied and environmental microbiology, 74(1), 333-335.
    Eliot, R., Wenzhao, J., Michael, G., Ying, W., Yu, L. 2008. CuO Nanospheres Based Nonenzymatic Glucose Sensor. Electroanalysis, 20(22), 2482-2486.
    Faisal, M., Khan, S.B., Rahman, M.M., Jamal, A., Umar, A. 2011. Ethanol chemi-sensor: Evaluation of structural, optical and sensing properties of CuO nanosheets. Materials Letters, 65(9), 1400-1403.
    Fog, A., Buck, R.P. 1984. Electronic semiconducting oxides as pH sensors. Sensors and Actuators, 5(2), 137-146.
    Ge, X.-Y., Qian, H., Zhang, W.-G. 2010. Enhancement of L-lactic acid production in Lactobacillus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism. Journal of microbiology and biotechnology, 20(1), 101-109.
    Ghaffar, T., Irshad, M., Anwar, Z., Aqil, T., Zulifqar, Z., Tariq, A., Kamran, M., Ehsan, N., Mehmood, S. 2014. Recent trends in lactic acid biotechnology: A brief review on production to purification. Journal of Radiation Research and Applied Sciences, 7(2), 222-229.
    Giménez-Gómez, P., Gutiérrez-Capitán, M., Capdevila, F., Puig-Pujol, A., Fernández-Sánchez, C., Jiménez-Jorquera, C. 2016. Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for l-lactate with long term stability. Analytica chimica acta, 905, 126-133.
    Givry, S., Prevot, V., Duchiron, F. 2008. Lactic acid production from hemicellulosic hydrolyzate by cells of Lactobacillus bifermentans immobilized in Ca-alginate using response surface methodology. World Journal of Microbiology and Biotechnology, 24(6), 745-752.
    Guo, W., Jia, W., Li, Y., Chen, S. 2010. Performances of Lactobacillus brevis for Producing Lactic Acid from Hydrolysate of Lignocellulosics. Applied Biochemistry and Biotechnology, 161(1), 124-136.
    Hetényi, K., Németh, Á., Sevella, B. 2011. Role of pH-regulation in lactic acid fermentation: Second steps in a process improvement. Chemical Engineering and Processing: Process Intensification, 50(3), 293-299.
    Holeyšovská, H. 1967. Spectrophotometric determination of lactic dehydrogenase isoenzymes after electrophoretic separation. Clinica Chimica Acta, 15(2), 353-358.
    Huang, F., Zhong, Y., Chen, J., Li, S., Li, Y., Wang, F., Feng, S. 2013. Nonenzymatic glucose sensor based on three different CuO nanomaterials. Analytical Methods, 5(12), 3050-3055.
    Ibupoto, Z., Khun, K., Beni, V., Liu, X., Willander, M. 2013. Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications. Sensors, 13(6), 7926.
    Ibupoto, Z.H., Shah, S.M.U.A., Khun, K., Willander, M. 2012. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors, 12(3), 2456-2466.
    Kenney, B.F. 1991. Determination of organic acids in food samples by capillary electrophoresis. Journal of Chromatography A, 546, 423-430.
    Kim, S., Kim, K., Kim, H.-J., Lee, H.-N., Park, T.J., Park, Y.M. 2018. Non-enzymatic electrochemical lactate sensing by NiO and Ni(OH)2 electrodes: A mechanistic investigation. Electrochimica Acta, 276, 240-246.
    Klampfl, C.W., Buchberger, W., Haddad, P.R. 2000. Determination of organic acids in food samples by capillary zone electrophoresis. Journal of Chromatography A, 881(1–2), 357-364.
    Kodama, S., Yamamoto, A., Matsunaga, A., Soga, T., Minoura, K. 2000. Direct chiral resolution of lactic acid in food products by capillary electrophoresis. Journal of Chromatography A, 875(1–2), 371-377.
    Komesu, A., de Oliveira, J.A.R., da Silva Martins, L.H., Maciel, M.R.W., Maciel Filho, R. 2017. Lactic Acid Production to Purification: A Review. BioResources, 12(2).
    Lee, Y.-M., Huang, C.-M., Chen, H.-W., Yang, H.-W. 2013. Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors. Sensors and Actuators A: Physical, 189, 307-312.
    Lima, J.L.F.C., Lopes, T.I.M.S., Rangel, A.O.S.S. 1998a. Enzymatic determination of L(+) lactic and L(−) malic acids in wines by flow-injection spectrophotometry. Analytica Chimica Acta, 366(1), 187-191.
    Lima, J.L.F.C., Lopes, T.I.M.S., Rangel, A.O.S.S. 1998b. Enzymatic determination of L(+) lactic and L(−) malic acids in wines by flow-injection spectrophotometry. Analytica Chimica Acta, 366(1–3), 187-191.
    Liu, G., Wang, K., Hoivik, N., Jakobsen, H. 2012. Progress on free-standing and flow-through TiO2 nanotube membranes. Solar Energy Materials and Solar Cells, 98, 24-38.
    Lupu, A., Valsesia, A., Bretagnol, F., Colpo, P., Rossi, F. 2007. Development of a potentiometric biosensor based on nanostructured surface for lactate determination. Sensors and Actuators B: Chemical, 127(2), 606-612.
    Martí, R., Varela, E., Segura, R.M., Alegre, J., Suriñach, J.M., Pascual, C. 1997. Determination of D-lactate by enzymatic methods in biological fluids: Study of interferences. Clinical Chemistry, 43(6), 1010-1015.
    Mataix, E., Luque de Castro, M.D. 2001. Determination of l-(−)-malic acid and l-(+)-lactic acid in wine by a flow injection-dialysis-enzymic derivatisation approach. Analytica Chimica Acta, 428(1), 7-14.
    Meher, S.K., Rao, G.R. 2013. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose. Nanoscale, 5(5), 2089-2099.
    Mello, L.D., Kubota, L.T. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry, 77(2), 237-256.
    Moisio, T., Heikonen, M. 1994. Lactic acid fermentation in silage preserved with formic acid. Animal Feed Science and Technology, 47(1), 107-124.
    Moisio, T., Heikonen, M. 1989. A titration method for silage assessment. Animal Feed Science and Technology, 22(4), 341-353.
    Mugula, J.K., Narvhus, J.A., Sørhaug, T. 2003. Use of starter cultures of lactic acid bacteria and yeasts in the preparation of togwa, a Tanzanian fermented food. International Journal of Food Microbiology, 83(3), 307-318.
    Nishijima, T., Nishina, M., Fujiwara, K. 1997. Measurement of lactate levels in serum and bile using proton nuclear magnetic resonance in patients with hepatobiliary diseases: its utility in detection of malignancies. Japanese journal of clinical oncology, 27(1), 13-17.
    Park, S., Boo, H., Chung, T.D. 2006. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 556(1), 46-57.
    Pereira, A.C., Aguiar, M.R., Kisner, A., Macedo, D.V., Kubota, L.T. 2007. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sensors and Actuators, B: Chemical, 124(1), 269-276.
    Pundir, C.S., Narwal, V., Batra, B. 2016. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosensors and Bioelectronics, 86, 777-790.
    Rosenberg, J., Rush, B. 1966. An enzymatic-spectrophotometric determination of pyruvic and lactic acid in blood. Clinical Chemistry, 12(5), 299-307.
    Sato, S., Soga, T., Nishioka, T., Tomita, M. 2004. Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. The Plant Journal, 40(1), 151-163.
    Shen, X., Xia, L. 2006. Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation. Applied Biochemistry and Biotechnology, 133(3), 251-262.
    Shibata, K., Flores, D.M., Kobayashi, G., Sonomoto, K. 2007. Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme and Microbial Technology, 41(1), 149-155.
    Shinbo, T., Sugiura, M., Kamo, N. 1979. Potentiometric enzyme electrode for lactate. Analytical Chemistry, 51(1), 100-104.
    Shkotova, L.V., Piechniakova, N.Y., Kukla, O.L., Dzyadevych, S.V. 2016. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine. Food Chemistry, 197, 972-978.
    Shui, G., Leong, L.P. 2002. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. Journal of Chromatography A, 977(1), 89-96.
    Simonides, W.S., Zaremba, R., van Hardeveld, C., van der Laarse, W.J. 1988. A nonenzymatic method for the determination of picomole amounts of lactate using HPLC: Its application to single muscle fibers. Analytical Biochemistry, 169(2), 268-273.
    Soga, T., Heiger, D.N. 2000. Amino Acid Analysis by Capillary Electrophoresis Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 72(6), 1236-1241.
    Soga, T., Heiger, D.N. 1998. Simultaneous Determination of Monosaccharides in Glycoproteins by Capillary Electrophoresis. Analytical Biochemistry, 261(1), 73-78.
    Soga, T., Ueno, Y., Naraoka, H., Matsuda, K., Tomita, M., Nishioka, T. 2002a. Pressure-Assisted Capillary Electrophoresis Electrospray Ionization Mass Spectrometry for Analysis of Multivalent Anions. Analytical Chemistry, 74(24), 6224-6229.
    Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M., Nishioka, T. 2002b. Simultaneous Determination of Anionic Intermediates for Bacillus subtilis Metabolic Pathways by Capillary Electrophoresis Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 74(10), 2233-2239.
    Sreenath, H.K., Moldes, A.B., Koegel, R.G., Straub, R.J. 2001. Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. Journal of Bioscience and Bioengineering, 92(6), 518-523.
    Sun, S., Zhang, X., Sun, Y., Yang, S., Song, X., Yang, Z. 2013a. Facile Water-Assisted Synthesis of Cupric Oxide Nanourchins and Their Application as Nonenzymatic Glucose Biosensor. ACS Applied Materials & Interfaces, 5(10), 4429-4437.
    Sun, S., Zhang, X., Sun, Y., Yang, S., Song, X., Yang, Z. 2013b. Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor. Physical Chemistry Chemical Physics, 15(26), 10904-10913.
    Tan, L., Wang, Y., Liu, X., Ju, H., Li, J. 2005. Simultaneous determination of l- and d-lactic acid in plasma by capillary electrophoresis. Journal of Chromatography B, 814(2), 393-398.
    Tanaka, T., Hoshina, M., Tanabe, S., Sakai, K., Ohtsubo, S., Taniguchi, M. 2006. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresource technology, 97(2), 211-217.
    Tashiro, Y., Kaneko, W., Sun, Y., Shibata, K., Inokuma, K., Zendo, T., Sonomoto, K. 2011. Continuous d-lactic acid production by a novelthermotolerant Lactobacillus delbrueckii subsp. lactis QU 41. Applied microbiology and biotechnology, 89(6), 1741-1750.
    Tian, K., Prestgard, M., Tiwari, A. 2014. A review of recent advances in nonenzymatic glucose sensors. Materials Science and Engineering: C, 41, 100-118.
    Tiselius, A. 1937. A new apparatus for electrophoretic analysis of colloidal mixtures. Transactions of the Faraday Society, 33, 524-531.
    Tumang, C.A., Borges, E.P., Reis, B.F. 2001. Multicommutation flow system for spectrophotometric l(+)lactate determination in silage material using an enzymatic reaction. Analytica Chimica Acta, 438(1), 59-65.
    Violeta, N., Trandafir, I., Ionica, M.E. 2010. HPLC organic acid analysis in different citrus juices under reversed phase conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1), 44.
    Wang, J., Luo, J., Feng, S., Li, H., Wan, Y., Zhang, X. 2016. Recent development of ionic liquid membranes. Green Energy & Environment, 1(1), 43-61.
    Wang, L., Zhao, B., Liu, B., Yu, B., Ma, C., Su, F., Hua, D., Li, Q., Ma, Y., Xu, P. 2010. Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101(20), 7908-7915.
    Wang, Y., Tashiro, Y., Sonomoto, K. 2015. Fermentative production of lactic acid from renewable materials: Recent achievements, prospects, and limits. Journal of Bioscience and Bioengineering, 119(1), 10-18.
    Wee, Y.-J., Yun, J.-S., Park, D.-H., Ryu, H.-W. 2004. Biotechnological production of l(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis. Biotechnology Letters, 26(1), 71-74.
    Wendisch, V.F. 2014. Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development. Current Opinion in Biotechnology, 30, 51-58.
    Zheng, L., Shaofeng, D., Zhaopeng, L., Tianwei, T. 2006. L-Lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnology Journal, 1(12), 1453-1458.

    QR CODE