研究生: |
林曉嵐 |
---|---|
論文名稱: |
射頻磁控濺鍍法製備Pb(Zr0.9Ti0.1)O3/ Pb(Zr0.1Ti0.9)O3鐵電多層膜 |
指導教授: | 林樹均 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 射頻磁控濺鍍 、鐵電多層膜 、鋯鈦酸鉛 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗是利用射頻磁控濺鍍法製作PZT(10/90)/PZT(90/10)成份互補多層膜於白金基板(Pt/Ti/SiO2/Si)上。研究重點包括單層膜鉛過量和功率的選取,以及等比例與非等比例成份互補的PZT多層膜對晶體結構、微觀結構、介電性質、鐵電特性、疲勞特性以及漏電流的影響。
結果顯示富鈦的PZT(10/90)單層膜,在鉛過量5 ~ 10 %、RF功率50 W ~ 60 W的條件下,可以在600 oC完全形成單一perovskite相。富鋯的PZT(90/10) 單層膜,在鉛過量10 ~ 15 %、RF功率50 W的條件下,可以在600 oC完全形成單一perovskite相,且其微結構較為緻密,具有最佳的鐵電性。非等比例成份互補多層膜在富鋯PZT(90/10)單層膜厚度與富鈦PZT(10/90)單層膜厚度相等時,有最大的介電常數318、最小的矯頑場62 kV/cm,以及最佳的耐疲勞性質。等比例成份互補多層膜方面,成相溫度較低的富鈦 PZT(10/90) 可以幫助富鋯 PZT(90/10)成相。隨著層數增加:晶粒尺寸會下降,至PZT-12時達到最小約為 10 nm;表面微裂隙所佔的比例減少,PZT-24表面顯得最為緻密;介電常數會上升,至PZT-60達最大值472;殘存極化量會上升至PZT-24的23.6 μC/cm2達最大值,矯頑場會下降至PZT-24的44.3 kV/cm為最小;疲勞性質能有所改善,PZT-8在反轉次數為109次下,仍能維持在88%;漏電流性質以PZT-6在施加電場將近200 kV/cm時,仍維持10□7A/cm2左右的電流密度為最佳。
1.S. L. Swartz and V. E. Wood, Cond. Mater. News, 1(1992)4.
2.石朗, “由MRAM/FeRAM與Flash卡應用潛力探究記憶體市場技術的新思維與新契機”, Compo Tech, 16(2000)100.
3.賴昇志,“以LaNiO3下電極,開發PZT鐵電記憶體低溫製程之研究”,國立清華大學碩士論文,(2001)
4.梁春昇,“氧化物電極上PZT薄膜之製備及特性研究”,國立清華大學碩士論文,(2001)
5.林明志,“濺鍍鋯鈦酸鉛薄膜之電漿診斷” 私立逢甲大學碩士論文,(2003)
6.陳昱丞,“異質多層鋯鈦酸鉛-白金薄膜與其電性”,國立清華大學碩士論文,(2001)
7.李振岳,“以Pt(O)製作下電極對PZT鐵電薄膜特性之影響研究”,國立清華大學碩士論文,(2001)
8.程國偉,“Pt電極與BaTiO3薄膜之介面擴散層對電性之影響”,國立成功大學碩士論文,(2001)
9.J. H. Janga and K. H. Yoona, “Electric fatigue properties of sol–gel-derived Pb(Zr, Ti)O3/PbZrO3 multilayered thin films” Appl. Phys. Lett., 75(1999)130.
10.J. H. Janga, K. H. Yoona, and K. Y. Oh, “Electrical fatigue of ferroelectric PbZr0.5Ti0.5O3 and antiferroelectric PbZrO3 thin films” Materials Research Bulletin, 35(2000)393.
11.B. Jaffe, R. S. Roth, and S. Marzullo, J. Res. Nat. Bur. Stand., 55(1955)239.
12.B. Jaffe, R. S. Roth, and S. Marzullo, J. App. Phys., 25(1954)809.
13.C. Feldman, “Formation of thin films of BaTiO3 by evaporation”, view of science instrument, 26(5), (1954)463.
14.A. E. Feuersanger, A. K. Hagenlocher and A. L. Solomln, “Preparation and properties of thin barium titanate films”, J. Electrochem. Soc. 111(1964)1387.
15.I. H. Pratt and S. Firestone, “Fabrication of RF-sputtered barium titanate”, J. Vac. Sci. Technol., 8(1971)256.
16.S. H. Kim, C. E. Kim, and Y. J. Oh, “Influence of Al2O3 diffusion barrier and PbTiO3 seed layer on microstructural and ferroelectric characteristics of PZT thin films by sol-gel spin coating method”, Thin Solid Films, 305(1997)321.
17.C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process”, J. Mater. Res., 8(2)(1993), p.229.
18.G. Velu, T. Haccart, B. Jaber, and D. Remiens, “PbTiO3 buffer layer effects on the structural and electrical properties of Pb(Zr, Ti)O3 thin films grown by sputtering on sillicon substrates” J. Vac. Sci. Technol. A, 16(4)(1998)2442.
19.T. L. Ren, L. T. Zhang, L. T. Liu, and Z. J. Li, “Sillicon-based PbTiO3/Pb(Zr, Ti)O3/PbTiO3 sandwich structure”, Jpn. J. Appl. Phys, 40(2001)2363.
20.H. Suzuki, S. Kaneko, K. Murakami, and T. Hayashi, “Low-temperature processing of highly oriented Pb(ZrxTi1-x)O3 thin film with multi-seeding layers”, Jpn. J. Appl. Phys., 36(1997)5803.
21.S. G. Lee and Y. H. Lee, “Dielectric properties of sol-gel derived PZT(40/60)/PZT(60/40) heterolayered thin films”, Thin Solid Films, 353(1999)244.
22.S. G. Lee , K. T. Shin and Y. H. Lee, “Preparation and characterization of lead zirconate titanate heterolayered thin films on Pt/Ti/SiO2/Si substrate by sol-gel method”, Jpn. J. Appl. Phys., 38(1999)217.
23.S. G. Lee, I. G. Park, S. G. Bae, and Y. H. Lee, “Dielectric properties of Pb(Zr, Ti)O3 heterolayered films prepared by sol-gel Method”, Jpn. J. Appl. Phys., 36(1997)6880.
24.S. G. Lee, K. T. Kim and Y. H. Lee, “ Characterization of lead zirconate titanate heterolayered thin films prepared on Pt/Ti/ SiO2/Si substrate by the sol-gel method”, Thin Solid Films, 372 (2000)45.
25.楊錦章, 基本濺鍍電漿, 電子發展月刊, 68(1983)5806。
26.金原粲, 薄膜的基本技術, 日本東京大學出版會社, (1984)3。
27.B. Chapman “Glow discharge process”, Published by John Wiley & Sons, Inc.(1980).
28.D. J. Mcclure and J. R. Crowe, J. Vac. Sci. Technol., 16(1979)311.
29.G. Velu and D. Remiens “In situ deposition of sputtered PZT films: control of the growth temperature by the sputtered lead flux”, Vacuum, 56 (2000)199.
30.C. Wang, Q. F. Fang, Z. G. Zhu, A. Q. Jiang, S. Y. Wang, B. L. Cheng, and Z. H. Chen, “Dielectric properties of Pb(Zr20Ti80)O3/Pb(Zr80Ti20)O3 multilayered thin films prepared by RF magnetron sputtering”, Appl. Phys. Lett., 82(17)(2003)2880.
31.K. Amanuma, T. Hase and Y. Miyasaka, “Crystalization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure”, Appl. Phys. Lett., 65(24)(1994)3140.
32.K. Nagashima, M. Aratani, and H. Funakubo, “Orientation dependence of ferroelectricity of epitaxially grown Pb(ZrxTi1-x)O3 thin films prepared by metalorganic chemical vapor deposition”, J. Appl. Phys., 89(2001)4517.
33.S. Y. Chen and C. L. Sun, “Ferroelectric characteristics of oriented Pb(Zr1-xTi x)O3 films”, J. Appl. Phys., 90(2001)2970.
34.I. Kanno and H. Kotera, “Crystallographic characterization of epitaxial Pb(Zr,Ti)O3 films with different Zr/Ti ratio grown by radio-frequency-magnetron sputtering”, J. Appl. Phys., 93(2003)4091.
35.H. Funakubo, M. Aratani, T. Oikawa, and K. Tokita, “Ferroelectricity of one-axis-preferred-oriented polycrystalline Pb(Zr,Ti)O3 films prepared by pulsed-metalorganic chemical vapor deposition”, J. Appl. Phys., 92(2002)6768.
36.J. K. Yang, W. S. Kim, and H. H. Park, “Effect of grain size of Pb(Zr0.4Ti0.6)O3 sol-gel derived thin flms on the ferroelectric properties”, Appl. Sur. Sci., 69(2001)544.
37.F. Yan, P. Bao, H. L.W. Chan, C. L. Choy, and Y. Wang, “ The grain size effect of Pb(Zr0.3Ti0.7 )O3 thin films”, Thin Solid Films, 406(2002)28.
38.J. F. Scott, “Ferroelectric Memories”, Springer, (1999).
39.C.A Paz de Araujo, J. D. Cuchiaro, L. D. Mcmillan, M. C. Scoot, and J. F. Scoot, Nature, 372(1995)627.
40.G. Arlt, D. Hennings, and G. De With, J. Appl. Phys., 58(1985)1619.