簡易檢索 / 詳目顯示

研究生: 周佑銘
Yu-Ming Chou
論文名稱: 表面上吸附金奈米粒子之侷限電漿共振吸收研究
Research on the Localized Plasmon Resonance of Gold Nanoparticles adsorbed on solid surface
指導教授: 果尚志
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 57
中文關鍵詞: 表面電漿子奈米粒子
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬奈米粒子在特定波長的光照射下,粒子會吸收某波段光,吸收波段會隨奈米粒子的幾何形狀、大小尺寸、環境介電常數的影響而不同,奈米粒子在光波照射下,內部會產生感應電場,此電場的行為可用偶極矩(dipole)來表示,且金屬奈米粒子彼此的距離夠近的話,粒子間彼此會有電漿子耦合(plasmon coupling)的現象,此耦合現象可由吸收光波段的紅移(red shift)發現,且紅移的程度隨著距離越近而提高。此論文以此現象為基礎,在玻璃基板上吸附奈米金顆粒,由不同密度、大小的金顆粒來觀察其吸收光譜,為了在玻璃基板上吸附高密度的奈米金顆粒,本論文使用了三種方法:(一)、使用自組裝分子膜在基板表面或奈米金顆粒表面。(二)、吸附金顆粒時外加電場。(三)、改變金顆粒溶液的離子濃度或金粒子濃度。
    本論文發現為了在基板表面有高密度的奈米金顆粒,利用奈米金顆粒在水溶液中帶負電的特性,用上述的方式控制電性吸附的條件。自組裝分子膜可以在樣品表面鍵結一層可以吸引奈米金顆粒的官能基,使得奈米金顆粒可以大量吸附在樣品上。外加電場是把金顆粒推向基板表面,讓金顆粒可以在短時間之內達到最大吸附量。而離子濃度的改變,會改變奈米金顆粒在水溶液中彼此的平均距離,在基板上的平均距離也可以縮小的話,也可以在樣品上吸附出高密度的奈米金顆粒。


    第一章 序論 --------------------------------------------------------------------------------------- 1 第二章 相關研究回顧 -------------------------------------------------------------------------- 2 2.1 局部表面電漿原理(Localized Surface Plasmon) -------------------------- 2 2.1.1 表面電漿理論基礎 ----------------------------------------------------- 2 2.1.2 尺寸與幾何形狀對表面電漿的影響 ------------------------------ 6 2.1.3 奈米顆粒周圍介電常數的影響 -------------------------------------7 2.1.4 局部表面電漿的應用 ------------------------------------------------ 10 第三章 儀器架設 ------------------------------------------------------------------------------- 12 3.1光學量測儀器的架設 ---------------------------------------------------------- 12 3.2吸收光譜的量測原理 ---------------------------------------------------------- 13 第四章 實驗結果與分析 --------------------------------------------------------------------- 15 4.1 奈米金顆粒的製備 ----------------------------------------------------------- 15 4.1.1配製步驟 ------------------------------------------------------------------ 15 4.1.2結果與比較 -------------------------------------------------------------- 15 4.2 自組裝分子膜的金顆粒吸附 ---------------------------------------------- 23 4.2.1準備自組裝分子膜的樣品 ------------------------------------------- 23 4.2.2吸附結果與分析 -------------------------------------------------------- 24 4.3外加電場下的金顆粒吸附 -------------------------------------------------- 26 4.3.1外加電場的實驗步驟 ------------------------------------------------- 26 4.3.2吸附的結果與分析 ---------------------------------------------------- 28 4.4不同離子濃度的金顆粒吸附 ----------------------------------------------- 29 4.4.1金顆粒溶液不同離子濃度的配製 --------------------------------- 29 4.4.2吸附結果與分析 -------------------------------------------------------- 29 4.5 MHDA包覆金顆粒 ------------------------------------------------------------ 34 4.5.1不同離子濃度有無MHDA的比較 -------------------------------- 36 4.6金溶液在樣品表面自然沉澱 ---------------------------------------------- 39 4.6.1不同樣品金顆粒的沉澱 --------------------------------------------- 39 4.6.2沉澱結果與分析 ------------------------------------------------------- 43 4.7 比較不同樣品的光學特性 ------------------------------------------------- 47 4.7.1不同尺寸金顆粒的比較 -------------------------------------------- 47 4.7.2不同密度金顆粒的比較 -------------------------------------------- 49 第五章 結論 ------------------------------------------------------------------------------------ 54 參考文獻 ---------------------------------------------------------------------------------------------- 56

    [1] New J. Chem. ,30,1121-1132 (2006)
    [2] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters , Springer, Berlin, (1995)
    [3] M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin , I. Vezmar and R. L. Whetten, J. Phys. Chem. B, 101, 3706 (1997)
    [4] T. Ung, L. M. Liz-Marzan and P. Mulvaney, J. Phys. Chem. B, 105, 3441 (2001)
    [5] G. C. Lica, B. S. Zelakiewicz, M. Constantinescu and Y. Tong, J. Phys. Chem. B, 108, 19896 (2004)
    [6] F. Gonella and P. Mazzoldi, in Metal Nanocluster Composite Glasses, in Handbook of Nanostructured Materials and Nanotechnology , ed. H. S. Nalwa, Academic Press , San Diego, CA, 4, 81 (2000)
    [7] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2003)
    [8] W. H. Yang, G. C. Schatz and R. P. Vanduyne, J. Chem. Phys., 103, 869 (1995)
    [9] G. Mie, Ann. Phys. (Leipzig), 25, 377 (1908)
    [10] J. Tiggesbaumker, L. Koller, H. O. Lutz and K. H. Meiwesbroer , Chem. Phys. Lett., 190, 42 (1992)
    [11] J. Tiggesbaumker, L. Koller, K. H. Meiwesbroer and A. Liebsch , Phys. Rev. A: At., Mol. Opt. Phys., 48, R1749 (1993)
    [12] A. Liebsch , Phys. Rev. B: Condens. Matter, 48, 11317 (1993)
    [13] S. Link, M. B. Mohamed and M. A. El-Sayed , J. Phys. Chem. B, 103, 3073 (1999)
    [14] M. Maillard, S. Giorgio and M. P. Pileni , J. Phys. Chem. B, 107, 2466 (2003)
    [15] D. B. Yu and V. W. W. Yam, J. Am. Chem. Soc. , 126,13200 (2004)
    [16] T. K. Sau and C. J. Murphy, J. Am. Chem. Soc. , 126, 8648 (2004)
    [17] E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp and S. Y. Li, NanoLett. , 4, 327 (2004)
    [18] L. M. Liz-Marzan, M. Giersig and P. Mulvaney , Langmuir,12, 4329 (1996)
    [19] P. Nordlander, C. Oubre, E. Prodan, K. Li and M. I. Stockman , J. Am. Chem. Soc., 4, 899 (2004)
    [20] N. L. Rosi and C. A. Mirkin , Chem. Rev., 105, 1547 (2005)
    [21] C. M. Niemeyer, Angew. Chem. , Int. Ed., 40, 4128 (2001)
    [22] P. Alivisatos , Nat. Biotechnol., 22, 47 (2004)
    [23] A. J. Haes and R. P. Van Duyne , Anal. Bioanal. Chem., 379,920 (2004)
    [24] T. A. Byassee, W. C. W. Chan and S. M. Nie , Anal. Chem., 72, 5606 (2000)
    [25] C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff , Nature, 382, 607 (1996)
    [26] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger and C. A. Mirkin , Science, 277, 1078 (1997)
    [27] J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin and R. L. Letsinger , J. Am. Chem. Soc., 120, 1959 (1998)
    [28] J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger and C. Schatz , J. Am. Chem. Soc., 122, 4640 (2000)
    [29] K. Sato, K. Hosokawa and M. Maeda , J. Am. Chem. Soc., 125, 8102 (2003)
    [30] H. X. Li and L. J. Rothberg , J. Am. Chem. Soc., 126, 10958 (2004)
    [31] L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas and J. West , Anal.Chem., 75, 2377 (2003)
    [32] N. Nath and A. Chilkoti , Anal. Chem., 76, 5370 (2004)
    [33] S. Y. Lin, S. W. Liu, C. M. Lin and C. H. Chen , Anal. Chem., 74, 330 (2002)
    [34] Y. Shiraishi, D. Arakawa and N. Toshima , Eur. Phys. J. E, 8, 377 (2002)
    [35] Y. G. Sun and Y. N. Xia , Anal. Chem., 74, 5297 (2002)
    [36] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld , Chem. Rev., 99, 2957 (1999)
    [37] A. Campion and P. Kambhampati , Chem. Soc. Rev., 27, 241 (1998)
    [38] Paul J. Sides , Langmuir, 17, 5791-5800 (2001)
    [39] Michael Giersig and Paul Mulvaney , Langmuir,9, 3408-3413 (1993)
    [40] K.-H. Su, Q.-H. Wei, and X. Zhang , Nano Lett., 3, No. 8 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE