簡易檢索 / 詳目顯示

研究生: 詹尚儒
Chan, Shang-Ju
論文名稱: 密度泛函理論佐證因能帶及電荷分佈改變使得4-硝基苯乙炔修飾的氧化亞銅粒子其染料光降解活性大幅增強
4-Nitrophenylacetylene-Modified Cu2O Showing Enhanced Photocatalytic Dye Degradation through Band Structure Tuning as Revealed by DFT calculations
指導教授: 黃瑄益
Huang, Hsuan-Yi
口試委員: 周至品
Chou, Jyh-Pin
羅友杰
Lo, Yu-Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 56
中文關鍵詞: 表面修飾密度泛函理論氧化亞銅表面官能化晶面效應染料光降解光催化
外文關鍵詞: anchor point, DFT calculations, Dye photodegradation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室先前發現具推電子官能基的4-乙炔基苯氨修飾在氧化亞銅表面時,會促進正立方體、正八面體、菱形十二面體對於甲基橙染料降解的活性,尤其是正立方體從原先的無降解活性變成有很好的降解活性。而本次實驗拓展至修飾拉電子官能基的4-硝基乙炔苯的氧化亞銅粒子以造成甲基橙染料降解活性的改變。本實驗中使用預處理過的碳酸鉀來催化整個官能化反應。傅立葉轉換紅外光光譜儀和X光射線電子能譜儀的鑑定發現鹼對於炔官能化在氧化亞銅的量可以有效的提升。{100}、{110}及{111}晶面在甲基橙光降解上都有非常顯著的提升,立方體在10分鐘降解了90%,正八面體則在35分鐘降解了90%,菱形十二面體則在5分鐘左右達到99%的降解。之後使用EPR分析於光降解實驗中所產生的各式自由基,並利用三氧化鉻以及草酸鈉分別作為電子電洞捕捉劑。EPR以及電子電洞捕捉劑的實驗顯示,電洞為修飾後的氧化亞銅在光催化中的主要參與反應激子。密度泛函理論計算之結果發現分子修飾會在氧化亞銅的能隙中產生一新的能帶以幫助電子的轉移,使得晶體表面的電荷密度會降低而有較多電洞聚集或產生,以利於電洞轉移至水分子產生氫氧自由基來降解甲基橙。因此用4-乙炔基苯氨修飾在氧化亞銅表面是非常成功的晶體表面改質方法以增強電荷傳輸的例子。


    Previously, inactive Cu2O cubes modified with electron-donating conjugated 4-ethynylaniline show a surprisingly high photocatalytic activity. Other particle shapes also displayed enhanced activity. This study explores electron-withdrawing 4-nitrophenylacetylene (4-NA) to reduce the surface charge density and change the photocatalytic activity of Cu2O crystals. The rates of methyl orange photodegradation dramatically improve for the 4-NA-modified Cu2O cubes, octahedra, and rhombic dodecahedra. A base was added to ensure terminal alkyne anchoring on the metal oxide surface. FT-IR spectroscopy and XPS spectra confirm alkyne group of 4-NA literally binding onto the Cu2O surface and addition of a base indeed increases the amount of 4-NA decoration. EPR experiments further verified the occurrence of photocatalytic charge transport process in the functionalized Cu2O crystals. Electron and hole scavenger experiments showed that holes play a greater role in the MO photodegradation, attributed to the electron-withdrawing 4-NA to withdraw the surface electrons to the nitrophenyl group and produce a charge-deficient surface. A new 4-NA-derived band within the band gap revealed density functional theory (DFT) calculations offer a facile pathway for electron transfer to 4-NA and form a charge-deficiency surface for hole transfer to adsorbed water to produce hydroxyl radicals.

    論文摘要 I ABSTRACT II TABLE OF CONTENTS III LIST OF FIGURES V LIST OF SCHEMES XI LIST OF TABLES XII 1. INTRODUCTION 1 1.1 Cuprous oxide 1 1.2 Facet-dependent photocatalytic properties of Cu2O 2 1.3 Photocatalytic activity of semiconductor decorated Cu2O 6 1.4 Photocatalytic activity of molecule functionalized Cu2O 8 2. MOTIVATION OF SURFACE-FUNCTIONALIZATION WITH 4- NITROPHENYLACETYLENE 13 3. EXPERIMENTAL SECTION 15 3.1 Chemicals 15 3.2 Synthesis of Cu2O nanoparticles 15 3.3 Solvent choice for 4-nitrophenylacetylene-modified Cu2O crystals 17 3.4 Facet-dependent photocatalytic activity of surface modification Cu2O crystals 19 3.5 Electron paramagnetic resonance (EPR) analysis 21 3.6 Density functional theory (DFT) computational details (Providing from Jui-Cheng Kao, Yu-Chieh Lo, Jyh-Pin Chou) 24 3.7 Instrumentation 25 4. RESULTS AND DISCUSSION 27 4.1 Characterization of 4-NA-functionalized Cu2O crystals 27 4.2 Methyl orange photodegradation 35 4.3 Density functional theory calculations 42 5. CONCLUSION 47 6. REFERENCES 49

    1. Huang, M. H.; Lin, P. H. Shape‐Controlled Synthesis of Polyhedral Nanocrystals and Their Facet‐Dependent Properties. Adv. Funct. Mater. 2012, 22 (1), 14-24.
    2. Huang, M. H.; Rej, S.; Hsu, S.-C. Facet-Dependent Properties of Polyhedral Nanocrystals. Chem. Commun. 2014, 50 (14), 1634-1644.
    3. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15 (3), 2155-2160.
    4. Leng, M.; Liu, M.; Zhang, Y.; Wang, Z.; Yu, C.; Yang, X.; Zhang, H.; Wang, C. Polyhedral 50-Facet Cu2O Microcrystals Partially Enclosed by {311} High-Index Planes: Synthesis and Enhanced Catalytic Co Oxidation Activity. J. Am. Chem. Soc. 2010, 132 (48), 17084-17087.
    5. Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Crystal‐Plane‐Controlled Surface Restructuring and Catalytic Performance of Oxide Nanocrystals. Angew. Chem. 2011, 123 (51), 12502-12506.
    6. Hua, Q.; Cao, T.; Gu, X. K.; Lu, J.; Jiang, Z.; Pan, X.; Luo, L.; Li, W. X.; Huang, W. Crystal‐Plane‐Controlled Selectivity of Cu2O Catalysts in Propylene Oxidation with Molecular Oxygen. Angew. Chem. 2014, 126 (19), 4956-4961.
    7. Pastor, E.; Pesci, F. M.; Reynal, A.; Handoko, A. D.; Guo, M.; An, X.; Cowan, A. J.; Klug, D. R.; Durrant, J. R.; Tang, J. Interfacial Charge Separation in Cu2O /RuOX as a Visible Light Driven CO2 Reduction Catalyst. Phys. Chem. Chem. Phys. 2014, 16 (13), 5922-5926.
    8. Schreier, M.; Gao, P.; Mayer, M. T.; Luo, J.; Moehl, T.; Nazeeruddin, M. K.; Tilley, S. D.; Grätzel, M. Efficient and Selective Carbon Dioxide Reduction on Low Cost Protected Cu2O Photocathodes Using a Molecular Catalyst. Energy Environ. Sci. 2015, 8 (3), 855-861.
    9. Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M. H. Direct Formation of Small Cu2O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles. Nanoscale 2014, 6 (15), 8704-8709.
    10. Chanda, K.; Rej, S.; Huang, M. H. Facet‐Dependent Catalytic Activity of Cu2O Nanocrystals in the One‐Pot Synthesis of 1, 2, 3‐Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19 (47), 16036-16043.
    11. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3, 5-Disubstituted Isoxazoles. Nanoscale 2013, 5 (24), 12494-12501.
    12. Liu, X.-W. Selective Growth of Au Nanoparticles on (111) Facets of Cu2O Microcrystals with an Enhanced Electrocatalytic Property. Langmuir 2011, 27 (15), 9100-9104.
    13. Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au−Cu2O Core−Shell Heterostructures. J. Am. Chem. Soc. 2011, 133 (4), 1052-1057.
    14. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134 (2), 1261-1267.
    15. Liang, T.-Y.; Chan, S.-J.; Patra, A. S.; Hsieh, P.-L.; Chen, Y.-A.; Ma, H.-H.; Huang, M. H. Inactive Cu2O Cubes Become Highly Photocatalytically Active with Ag2S Deposition. ACS Appl. Mater. Interfaces 2021, 13 (9), 11515-11523.
    16. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One‐Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals‐Composed Porous Multishell and Their Gas‐Sensing Properties. Adv. Funct. Mater. 2007, 17 (15), 2766-2771.
    17. Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, Self-Assembly, Disassembly, and Reassembly of Two Types of Cu2O Nanocrystals Unifaceted with {001} or {110} Planes. J. Am. Chem. Soc. 2010, 132 (17), 6131-6144.
    18. Liu, Z. G.; Sun, Y. F.; Chen, W. K.; Kong, Y.; Jin, Z.; Chen, X.; Zheng, X.; Liu, J. H.; Huang, X. J.; Yu, S. H. Facet‐Dependent Stripping Behavior of Cu2O Microcrystals toward Lead Ions: A Rational Design for the Determination of Lead Ions. Small 2015, 11 (21), 2493-2498.
    19. Wang, J.; Cui, F.; Chu, S.; Jin, X.; Pu, J.; Wang, Z. In Situ Growth of Noble-Metal Nanoparticles on Cu2O Nanocubes for Surface-Enhanced Raman Scattering Detection. ChemPlusChem 2014, 79 (5), 684.
    20. You, T.; Jiang, L.; Yin, P.; Shang, Y.; Zhang, D.; Guo, L.; Yang, S. Direct Observation of p, p'‐Dimercaptoazobenzene Produced from p‐Aminothiophenol and p‐Nitrothiophenol on Cu2O Nanoparticles by Surface‐Enhanced Raman Spectroscopy. J Raman Spectrosc 2014, 45 (1), 7-14.
    21. Morales‐Guio, C. G.; Liardet, L.; Mayer, M. T.; Tilley, S. D.; Grätzel, M.; Hu, X. Photoelectrochemical Hydrogen Production in Alkaline Solutions Using Cu2O Coated with Earth‐Abundant Hydrogen Evolution Catalysts. Angew. Chem. 2015, 127 (2), 674-677.
    22. Hung, L. I.; Tsung, C. K.; Huang, W.; Yang, P. Room‐Temperature Formation of Hollow Cu2O Nanoparticles. Adv. Mater. 2010, 22 (17), 1910-1914.
    23. Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials. Adv. Mater. 2009, 21 (7), 803-807.
    24. Chen, K.; Song, S.; Xue, D. Faceted Cu2O Structures with Enhanced Li-Ion Battery Anode Performances. CrystEngComm 2015, 17 (10), 2110-2117.
    25. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5 (29), 15116-15123.
    26. Yuan, G. Z.; Hsia, C. F.; Lin, Z. W.; Chiang, C.; Chiang, Y. W.; Huang, M. H. Highly Facet‐Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au‐Decorated Cu2O Heterostructures. Chem. Eur. J. 2016, 22 (35), 12548-12556.
    27. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9 (44), 39086-39093.
    28. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2018, 11 (3), 3582-3589.
    29. Wu, S. C.; Tan, C. S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27 (9), 1604635.
    30. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.
    31. Shanmugam, M.; Sagadevan, A.; Charpe, V. P.; Pampana, V. K. K.; Hwang, K. C. Cu2O Nanocrystals‐Catalyzed Photoredox Sonogashira Coupling of Terminal Alkynes and Arylhalides Enhanced by CO2. ChemSusChem 2020, 13 (2), 287-292.
    32. Zhang, W.; Ren, B.; Jiang, Y.; Hu, Z. Carboxymethylpullulan Promoted Cu2O-Catalyzed Huisgen-Click Reaction. RSC adv. 2015, 5 (16), 12043-12047.
    33. Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning. ACS Cent. Sci. 2020, 6 (6), 984-994.
    34.Harish, S.; Navaneethan, M.; Archana, J.; Silambarasan, A.; Ponnusamy, S.; Muthamizhchelvan, C.; Hayakawa, Y. Controlled Synthesis of Organic Ligand Passivated ZnO Nanostructures and Their Photocatalytic Activity under Visible Light Irradiation. Dalton Trans. 2015, 44 (22), 10490-10498.
    35. Bouclé, J.; Ravirajan, P.; Nelson, J. Hybrid Polymer–Metal Oxide Thin Films for Photovoltaic Applications. J. Mater. Chem. 2007, 17 (30), 3141-3153.
    36. Gao, Y.; Shi, E.; Deng, S.; Shiring, S. B.; Snaider, J. M.; Liang, C.; Yuan, B.; Song, R.; Janke, S. M.; Liebman-Peláez, A. Molecular Engineering of Organic–Inorganic Hybrid Perovskites Quantum Wells. Nat. Chem. 2019, 11 (12), 1151-1157.
    37. Ho, J.-Y.; Huang, M. H. Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. J. Phys. Chem. C 2009, 113 (32), 14159-14164.
    38. Peter E. Blochl, O. Jepsen, O. K. Andersen. Improved Tetrahedron Method for Brillouin-Zone Integrations. Phys. Rev. B 1994, 49, 16223-16233.
    39. G. Kresse, D. Joubert. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B 1999, 59, 1758-1775.
    40. G. Kresse, J. Furthmüller. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50.
    41. G. Kresse, J. Furthmüller. Efficient Iterative Schemes for Ab Initio otal-energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169-11186.
    42. Kullapere, M.; Marandi, M.; Matisen, L.; Mirkhalaf, F.; Carvalho, A. E.; Maia, G.; Sammelselg, V.; Tammeveski, K. Blocking Properties of Gold Electrodes Modified with 4-Nitrophenyl and 4-Decylphenyl Groups. J. Solid State Electrochem. 2012, 16 (2), 569-578.
    43. Dupin, J.-C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS Studies of Metal Oxides, Hydroxides and Peroxides. Phys. Chem. Chem. Phys. 2000, 2 (6), 1319-1324.
    44. Aloysius Soon, Mira Todorova, Bernard Delley, and Catherine Stampfl. Thermodynamic Stability and Structure of Copper Oxide Surfaces: A First-Principles Investigation. Phys. Rev. B 2007, 75, 125420
    45. Liang Li, Rui Zhang, John Vinson, Eric L. Shirley, Jeffrey P. Greeley, Jeffrey R. Guest, and Maria K. Y. Chan. Imaging Catalytic Activation of CO2 on Cu2O (110): A First-Principles Study. Chem. Mater. 2018, 30 (6), 1912-1923.
    46. Soldemo, M.; Stenlid, J. H.; Besharat, Z.; Ghadami Yazdi, M.; Onsten, A.; Leygraf, C.; Gothelid, M.; Brinck, T.; Weissenrieder, J. The Surface Structure of Cu2O (100). The Journal of Physical Chemistry C 2016, 120 (8), 4373-4381.
    47. Zhang, R.; Li, L.; Frazer, L.; Chang, K. B.; Poeppelmeier, K. R.; Chan, M. K.; Guest, J. R. Atomistic Determination of the Surface Structure of Cu2O (111): Experiment and Theory. Phys. Chem. Chem. Phys. 2018, 20 (43), 27456-27463.

    QR CODE