研究生: |
鄭志琦 Cheng, Chih-Chi |
---|---|
論文名稱: |
溫度敏感型胺基酸水膠作為免疫抑制藥物傳遞系統於複合性異體移植之應用 Thermosensitive Polypeptide Hydrogel for Immunosuppressive Drug Delivery in Vascularized Composite Allotransplantation |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
王潔
林承弘 Lin, Cheng-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 複合性異體移植 、他克莫司 、溫度敏感型胺基酸水膠 |
外文關鍵詞: | polypeptide thermosensitive hydrogel, tacrolimus, vascularized composite allotransplantation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複合性異體移植的病患常常因為免疫排斥導致移植物壽命縮短甚至失去功能,因此常常必須在手術後數年內使用免疫抑制劑他克莫司來降低排斥反應。而他克莫司目前臨床多使用每天注射及口服方式給藥。本研究透過新型溫度敏感型高分子PLX-b-poly(ʟ-alanine-lysine) (P-Lys-Ala-PLX)作為包覆他克莫司的長效型藥物緩釋水膠,期望能達到良好的藥物釋放效果,彌補臨床需求。
本研究透過1H核磁共振確認成功合成P-Lys-Ala-PLX共聚物,並藉由穿透式電子顯微鏡、動態光散射儀、掃描式電子顯微鏡、全反射傅立葉轉換紅外線光譜儀、流變儀等儀器觀測此溫度敏感型胺基酸水膠成膠機制,成膠後性質及胺基酸二級結構變化。實驗結果顯示4-5% P-Lys-Ala-PLX確實能夠在常溫為液態而體溫狀態形成膠體,並隨著溫度上升α-helix比例有增加趨勢。再者,透過改良水膠藥物載體配方,利用混摻少量pluronic F-127加速藥物釋放,此一複合劑型以高效能液相層析儀分析確認其配方能夠有效包覆藥物並達到緩慢長效釋放。研究成果顯示此材料及藥物載體配方具有相當潛力作為包覆免疫抑制劑的長效釋放劑型。
Tacrolimus is an immunosuppressive agent which is usually applied to patients who received allotransplantation to reduce immune rejection. The strong hydrophobicity of tacrolimus makes it difficult to be applied in aqueous system. It has been studied to be encapsulated by micelles. However, the low efficiency of encapsulation in micelles is an obstacle for further application. Polypeptide thermosensitive hydrogel is considered as a great candidate for drug delivery because of several advantages, such as excellent biocompatibility and biodegradability, low concentration for gelation and sensitive response temperature change. In this study, we synthesized a thermosensitive polypeptide hydrogel by copolymerizing poloxamer and poly(ʟ-alanine) with ʟ-lysine segments at the both ends to form PLX-b-poly(ʟ-alanine-lysine) (P-Lys-Ala-PLX) copolymers. Poly(ʟ-alanine) is the hydrophobic chain of P-Lys-Ala-PLX copolymers which was designed to capture the hydrophobic agents. The synthesis was examined by 1H NMR and showed that P-Lys-Ala-PLX copolymers was successfully synthesized. P-Lys-Ala-PLX has a sol-gel behavior with low concentration of 3-7 wt%. The formulation of mix hydrogel by mixing a little pluronic F127 showed high drug encapsulation efficiency. The experiment of drug release also showed that the tacrolimus released constantly over time. This study indicates that this copolymer and mix hydrogel formulation is a high potential injectable drug carrier for biomedical application.
1. Hoare, T.R. and D.S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer, 2008. 49(8): p. 1993-2007.
2. Wichterle, L., Hydrophilic gels for biological use. nature, 1960.
3. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
4. Kopecek, J., Hydrogel biomaterials: a smart future? Biomaterials, 2007. 28(34): p. 5185-92.
5. Li, Y., J. Rodrigues, and H. Tomas, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev, 2012. 41(6): p. 2193-221.
6. Nguyen, M.K. and E. Alsberg, Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci, 2014. 39(7): p. 1236-1265.
7. Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2012. 64: p. 18-23.
8. Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 2012. 64: p. 223-236.
9. Ko, D.Y., Shinde U.S., Yeon B.,Jeong B., Recent progress of in situ formed gels for biomedical applications. Progress in Polymer Science, 2013. 38(3-4): p. 672-701.
10. Chung, H.J. and T.G. Park, Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today, 2009. 4(5): p. 429-437.
11. Yong Qiu, K.P., Environment-sensitive hydrogels for drug delivery. 2001.
12. Jeong, Y., Jeong, Y., Joo, M. K., Bahk, K. H., Choi, Y. Y., Kim, H. T., Kim, W. K., Lee, H. J., Sohn, Y. S., Jeong, B., Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. J Control Release, 2009. 137(1): p. 25-30.
13. Piyush Gupta, K.V.a.S.G., <Hydrogels from controlled release to pH-responsive drug delivery.pdf>. 2002.
14. Boustta, M., Colombo, P. E., Lenglet, S., Poujol, S., Vert, M., Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J Control Release, 2014. 174: p. 1-6.
15. Klouda, L., Thermoresponsive hydrogels in biomedical applications: A seven-year update. Eur J Pharm Biopharm, 2015. 97(Pt B): p. 338-49.
16. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2012. 64: p. 49-60.
17. Nguyen, M.K. and D.S. Lee, Injectable biodegradable hydrogels. Macromol Biosci, 2010. 10(6): p. 563-79.
18. Yu, L. and J. Ding, Injectable hydrogels as unique biomedical materials. Chem Soc Rev, 2008. 37(8): p. 1473-81.
19. Yu, L., Chang, G., Zhang H., Ding, J., Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. Journal of Polymer Science Part A: Polymer Chemistry, 2007. 45(6): p. 1122-1133.
20. Huynh, C.T., M.K. Nguyen, and D.S. Lee, Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications. Macromolecules, 2011. 44(17): p. 6629-6636.
21. Byeongmoon Jeong , S.W.K., You Han Bae *, <Thermosensitive sol–gel reversible hydrogels>. 2001.
22. He, C., S.W. Kim, and D.S. Lee, In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release, 2008. 127(3): p. 189-207.
23. Ruel-Gariepy, E. and J.C. Leroux, In situ-forming hydrogels--review of temperature-sensitive systems. Eur J Pharm Biopharm, 2004. 58(2): p. 409-26.
24. Joo M.K.,Park M. H.Choi B. G.,Jeong B., Reverse thermogelling biodegradable polymer aqueous solutions. Journal of Materials Chemistry, 2009. 19(33): p. 5891.
25. Park M.H., Joo M. K., Choi B. G, Jeong B., <Biodegradable Thermogels.pdf>. 2011.
26. Lai P.L., Lin T.Y., Hong D.W.,Yang S.R.,Chang Y.H.,Chen L.H.,Chen W.J.,Chu I.M.,Development of bioactive thermosensitive polymer–ceramic composite as bone substitute. Chemical Engineering Science, 2013. 89: p. 133-141.
27. Moon, H.J., Ko du, Y., Park M. H., Joo M. K., Jeong B., Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev, 2012. 41(14): p. 4860-83.
28. Yeon B., Park M. H.,Moon H. J., Kim S. J., Cheon Y. W., Jeong B., 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly(L-alanine) diblock copolymer thermogel. Biomacromolecules, 2013. 14(9): p. 3256-66.
29. Yun E.J., Yon B., Joo M. K., Jeong B., Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel. Biomacromolecules, 2012. 13(4): p. 1106-11.
30. Fairman, R. and K.S. Akerfeldt, Peptides as novel smart materials. Curr Opin Struct Biol, 2005. 15(4): p. 453-63.
31. Chiang P.R., Lin T. Y., Tsai H. C., Chen H. L., Liu S. Y., Chen F. R., Hwang Y. S., Chu I. M., Thermosensitive hydrogel from oligopeptide-containing amphiphilic block copolymer: effect of peptide functional group on self-assembly and gelation behavior. Langmuir, 2013. 29(51): p. 15981-91.
32. Cheng Y., He C., Xiao C., Ding J., Zhuang X., Huang Y., Chen, X., Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. Biomacromolecules, 2012. 13(7): p. 2053-9.
33. Huang, J., Hastings, C. L.,Duffy, G. P., Kelly, H. M., Raeburn, J., Adams, D. J.Heise, A., Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers. Biomacromolecules, 2013. 14(1): p. 200-6.
34. Lin, J.Y., Lai, Po-L, Lin Y.K., Peng S.,Lee L.Y.,Chen C.N.,Chu I.M., A poloxamer-polypeptide thermosensitive hydrogel as a cell scaffold and sustained release depot. Polym. Chem., 2016. 7(17): p. 2976-2985.
35. Maslovskis, A., Guilbaud, J. B., Grillo, I., Hodson, N., Miller, A. F., Saiani, A., Self-assembling peptide/thermoresponsive polymer composite hydrogels: effect of peptide-polymer interactions on hydrogel properties. Langmuir, 2014. 30(34): p. 10471-80.
36. Shinde, U.P., Joo M.K., Moon H.J., Jeong B, Sol–gel transition of PEG–PAF aqueous solution and its application for hGH sustained release. Journal of Materials Chemistry, 2012. 22(13): p. 6072.
37. Oh H.J., Joo M.K., Sohn Y.S., Jeong B., Secondary Structure Effect of Polypeptide on Reverse Thermal Gelation and Degradation of L/DL-Poly(alanine)–Poloxamer–L/DL-Poly(alanine) Copolymers. 2008.
38. Park, S.H., et al., Block sequence affects thermosensitivity and nano-assembly: PEG-l-PA-dl-PA and PEG-dl-PA-l-PA block copolymers. Soft Matter, 2011. 7(14): p. 6515.
39. Choi, Y.Y.,Joo M.K., Sohn Y.S.,Jeong B., Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers. Soft Matter, 2008. 4(12): p. 2383.
40. Choi, Y.Y.,Jang J.H., Park M.H., Choi B.G., Chi B.,Jeong B., Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. Journal of Materials Chemistry, 2010. 20(17): p. 3416.
41. Raeburn, J., A. Zamith Cardoso, and D.J. Adams, The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev, 2013. 42(12): p. 5143-56.
42. Mehrotra, N., Gupta, M., Kovar, A., Meibohm, B., The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. Int J Impot Res, 2007. 19(3): p. 253-64.
43. Winzenburg, G., Schmidt, C., Fuchs, S., Kissel, T., Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliv Rev, 2004. 56(10): p. 1453-66.
44. Gajanayake T., Olariu R., Leclère F.M.,Dhayani A., Yang Z., Bongoni A.K., Banz Y., Constantinescu M.A., Karp J.M., Vemula P.K., Rieben R., Vogelin E.,A-single-localized-dose-of-enzyme-responsive-hydrogel-improves-long-term-survival-of-a-vascularized-composite-allograft.. 2015.
45. Murphy, B.D., R.M. Zuker, and G.H. Borschel, Vascularized composite allotransplantation: an update on medical and surgical progress and remaining challenges. J Plast Reconstr Aesthet Surg, 2013. 66(11): p. 1449-55.
46. Hautz, T., Zelger, B. G., Weissenbacher, A., Zelger, B., Brandacher, G., Landin, L., Morelon, E., Kanitakis, J., Jablecki, J., Lee, W. P., Pratschke, J., Schneeberger, S., Standardizing skin biopsy sampling to assess rejection in vascularized composite allotransplantation. Clin Transplant, 2013. 27(2): p. E81-90.
47. <TRANSPLANTATION.pdf>.
48. 李建瑩, 賴永融, 施宏哲, <免疫抑制劑簡介.pdf>. 2011.
49. <tacrolimus mechanism.pdf>. 2000.
50. Xu, W., P. Ling, and T. Zhang, Toward immunosuppressive effects on liver transplantation in rat model: tacrolimus loaded poly(ethylene glycol)-poly(D,L-lactide) nanoparticle with longer survival time. Int J Pharm, 2014. 460(1-2): p. 173-80.
51. Tajdaran, K., Shoichet, M. S., Gordon, T., Borschel, G. H., A novel polymeric drug delivery system for localized and sustained release of tacrolimus (FK506). Biotechnol Bioeng, 2015. 112(9): p. 1948-53.
52. Xichen Zhang avb, J.K.J.a., Helen M. Burt a, <Determination of surfactant critical micelle concentration by a novel fluorescence depolarization technique.pdf>. 1995.
53. Baginska, K., Makowska, J., Wiczk, W., Kasprzykowski, F., Chmurzynski, L., Conformational studies of alanine-rich peptide using CD and FTIR spectroscopy. J Pept Sci, 2008. 14(3): p. 283-9.