研究生: |
吳晉瑋 Wu,Jin Wei |
---|---|
論文名稱: |
運用應力補償層及奈米結構技術於新型GaN磊晶矽基板之研究 Silicon Substrate for GaN Epi-Growth by Stress Compensation Layer and Nanostructure Technique |
指導教授: |
葉哲良
Yeh,Jer Liang Andrew |
口試委員: |
林育芸
侯帝光 徐文慶 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 氮化鎵磊晶 、應力補償層 、熱不匹配 |
外文關鍵詞: | GaN epitaxy, Stress compensation layer, Thermal mismatch |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵(GaN)為III-V族材料是目前討論非常熱烈的半導體材料,而通常材料採外延性磊晶生長(Epitaxy)來取得,因此發展出許多磊晶基板的選擇,其中矽基板成為未來發展趨勢,因為取得容易且成本相對低廉使矽基板具有大尺寸成長(large-scale growth)及大規模生產(mass-production)的優點,進而使其更具競爭力。但矽基氮化鎵因為材料特性的差異會衍生出許多問題,尤其因材料熱不匹配所產生的晶圓翹曲(wafer Bow)更為重要,就程度而言重者會造成磊晶片直接破裂損毀而輕者也會導致後續製程的麻煩,例如黃光微影的校正問題。
有鑑於此首先透過矽基板背面鍍膜驗證應力補償層的概念,在此針對兩種材料(氧化鋁及氮化矽)做討論,先行創造出預翹曲矽基板(pre-bow wafer)作為後續磊晶基板使用,目的在於抵銷後續氮化鎵成長所產生的翹曲。首先因氧化鋁薄膜並非常見鍍膜材料,因此針對由RF Sputtert成長的氧化鋁薄膜進行薄膜性質以及預翹曲程度作討論以卻氧化鋁材料的可行性,在此確立氧化鋁薄膜確實有使基板產生預彎曲的特性且在高溫環境操作下也有良好的熱穩定性,但受限於機台操作限制而導致厚度無法達到所需厚度,因此而另尋氮化矽作為背度鍍膜之材料,隨後對氮化矽薄膜也進行預翹曲程度的檢視,且結合背部奈米結構創造出具有足夠預彎曲特性的磊晶基板。
而接著針對2-inch基板做討論,由於本實驗結合奈米結構的應用,因此先對奈米結構的成長做討論,後續分別針對不同製程的預翹曲基板的翹曲程度及曲率變化作分析,並透過抗彎強度測試驗證此類基板有1.5倍的強度提升。最後在基板正面(polishing side)進行1μm的氮化鎵(GaN),並與尚未進行任何處理之氮化鎵磊晶片比較以此驗證所製備的預翹曲基板的效益,進而提出新型磊晶基板的概念並期望在未來能有效解決GaN on Silicon 晶圓翹曲的問題。
III-V material such as GaN is very popular and promising semiconductor material , and can be obtained by external epitaxy growth . There are several kinds of substrate are developed in order to match the desire about getting those material ,especially silicon. Silicon is common use in industry and low cost material compared to sapphire and SiC .It also more easier to achieve large-scale growth and mass production due to substrate size , but GaN on silicon will result in many problem caused by material property difference between them . The most critical issue is wafer bow due to huge CTE difference in two material . Those bow may influence the lithography accuracy or may lead wafer to break and be damaged in worst situation.
For eliminating bow effect , we announce backside stress compensation layer by backside film deposition to achieve that . In order to select proper material serve as our stress compensation layer , we try Al2O3 and Si3N4 as candidate to make our pre-bow substrate . Also we confirm film’s property and bow magnitude caused by film . Filnally, we chose Si3N4 to create our backside film and also confirm the precise bow and curvature variation caused by film .
After that we combine nanostructuring strengthening technology from our labs
to our pre-bow substrate . The high-strength and pre-bow substrate was created and strength is larger than polished wafer by 1.5 fold.
In final part , we use this kind of pre-bow wafer for GaN epitaxy . Comparing to normal polished wafer , we can eliminate the bow magnitude caused by GaN effectively and obtain more flat post-epi wafer.
[1] S. F. A. Dadgar , O.Schulz , J.Hennig , J.Bl¨asing "Anisotropic bow and plastic deformation of GaN on silicon," Journal of Crystal Growth, 2013.
[2] R. Stevenson, "矽上氮化鎵(GaN on silicon)的步伐加速," Compound Semiconductors Taiwan vol. 2, 2014.
[3] D. A. H. a. K. R. E. Tanya Paskova, "GaN Substrates for III-Nitride Devices," vol. 7, pp. 1324-1338, 2010.
[4] B. Gil, "III-Nitride Semiconductors and their Modern Devices."
[5] B. Gil, "III-Nitride Semiconductors and their Modern Devices," Eletrical Book.
[6] S. P. a. C. JACOB, "Silicon—a new substrate for GaN growth," Indian Academy of Sciences, vol. 27, September 2004.
[7] A. D. Alois Krost "GaN-based optoelectronics on silicon substrates," Materials Science and Engineering B, 2002.
[8] K. C. Mario Gonzalez, Peter Tseng, Gustaaf Borghs, "GaN Growth on Patterned Silicon Substrates. A thermo mechanical study on wafer bow reduction," International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2012.
[9] "以大尺寸矽晶圓降低LED成本" Compound Semiconductors Taiwan, 2013.
[10] H. A. T. Takeuchi, K. Hiramatsu, N. Sawaki, I. Akasaki, "Growth of single crystalline GaN film on Si substrate using 3CSiC as an intermediate layer," Crystal Growth, 1991.
[11] C. J. S. J. W. Yang, Q. Chen, M.Z. Anwar, M.S. Khan, S. A. Nikishin, G.A. Seryogin, A. V. Osinsky, L. Chernyak, H. Temkin, C. Hu, S. Mahajan, "High quality GaN-InGaN heterostructures grown on (111) silicon substrates," Apply Phys. Letter, 1996.
[12] H. M. Perkins NP , Bandic ZZ , McGill TC ,Kuech TF "Halide vapor phase epitaxy of gallium nitride films on sapphire nd silicon substrates," Mater Res Soc Symp Proc, 1996.
[13] T. T. A. Watanabe, K. Hirosawa, H. Amano, K. Hiramatsu, I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer," Crystal Growth, 1993.
[14] A. S. P. Kung, X. Zhang, D. Walker, T. C. Wang, I. Ferguson, M. Razeghi, "High quality AlN and GaN epilayers grown on (00-1) sapphire, (100), and (111) silicon substrates," Appl. Phys. Lett, 1995.
[15] N. S. H. Amano, I. Akasak, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Appl. Phys. Lett, 1986.
[16] N. N. F. S. A. Nikishin, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, and H Temkin, "High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia," Appl. Phys. Lett, 1999.
[17] W. L. Zang Keyan, Chua Soo Jin, Carl V. Thompson, "Evolution of AlN buffer layers on Silicon and the effect on the property of the expitaxial GaN ilm," Cryst. Growth, 1989.
[18] D. K. Kim, "Effect of AlN buffer thickness on stress relaxation in GaN layer on Si (111) " Solid-State Electronics, vol. 51, pp. 1005-1008, 2007.
[19] B. B. Eric Feltin, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux. P. Gibart, "Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy," Applied Physics Letters, 2001.
[20] K. I. Akinori Ubukata, Nakao Akutsu, Akira Yamaguchi, and T. Y. Koh Matsumoto, Takashi Egawa, "GaN growth on 150-mm-diameter (1 1 1) Si substrates," Journal of Crystal Growth, 2007.
[21] M. P. A. Dadgar, J. Blasing , O. Contreras, F. Bertram, "MOVPE growth of GaNon Si(1 1 1) substrates," Journal of Crystal Growth, vol. 248, 2003.
[22] Y. K. S. Tanaka, N. Sawaki, M. Hibino, K. Hiramatsu,, Appl. Phys. Lett, vol. 76, 2000.
[23] K. L. Bumjoon Kim, Samseok Jang, Junggeun Jhin, Seungjae Lee, "Epitaxial Lateral Overgrowth of GaN on Si (111) Substrates Using High-Dose, N+ Ion Implantation," Chemical Vapor Deposition, 2010.
[24] "Modeling of Thermal Residual Stresses of Crack Free GaN Epitaxial Film
Grown on Patterned Silicon Substrates," Electronic Components and Technology Conference, 2009
[25] H. Zhaohui Chen, Zhiyin Gan, Sheng Liu, "Modeling of Thermal Residual Stresses of Crack Free GaN Epitaxial Film Grown on Patterned Silicon Substrates," Electronic Components and Technology Conference, 2009.
[26] K. C. Mario Gonzalez, Peter Tseng, Gustaaf Borghs, "GaN Growth on Patterned Silicon Substrates. A thermo mechanical study on wafer bow reduction," International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2013.
[27] L. J. Flandre D , Raskin ,J-P, "Micromachined Thin Film for SOI-CMOS," 2006.
[28] F. A. D. a. R. W. Hoffman, Thin Solid Films vol. 12, 1972.
[29] J. D. F. a. R. W. Hoffman, J. Appl. Phys. 48, 2543, vol. 30, 1959.
[30] B. W. S. K. H. A. Lau, "Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films," Journal of applied physics vol. 90, 2001.
[31] "Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films," Material research, vol. 14, 1999.
[32] G. H. O. a. M. Ettenberg, J. Appl. Phys. 48, 2543, 1977.
[33] "Material property database " http://accuratus.com/alumox.html.
[34] S.Ruppi, "Deposition,Microstructure and Properties of Texture-controlled CVD alpha-Al2O3 coatings," Vacuum Science & Technology A-Vacuum Surfaces And Films, 2005.
[35] Q. Y. Li, YH; Bhatia, CS; Marks, LD; Lee, SC; Chung, YW, "Low-temperature magnetron sputter-deposition, hardness, and electrical resistivity of amorphous and crystalline alumina thin films " Vacuum Science & Technology A-Vacuum Surfaces And Films, vol. 18, pp. 2333-2338, 2000.
[36] C.-N. Chen, "Strengthening for sc-Si Solar Cells by Surface Modification With Nanowires," MICROELECTROMECHANICAL SYSTEMS, vol. 20, 2011.
[37] "Residaul Stress in Silicon Nitride Film," Journal of Electronic Materials, vol. Vol. 5, 1976.
[38] "Measuring Stiffnesses and Residual Stresses of Silicon Nitride Thin Films " Journal of Electronic Materials, vol. Vol. 19, 1990.
[39] Z. P. S. Huang, T.Senz, S. Zhang, Z. Geyer, N. Gosele, U., "Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon," Journal of Physical Chemistry C, vol. 114, pp. 10683-10690, Jun 24 2010.
[40] C. W. A. Sung Bo Lee a, "Directed evolution of α-grains in thin metastable-Al2O3 films deposited on Si(100) after post-deposition annealing," Thin Solid Films, 2010.
[41] M. J. Z. W. L. Xu, S. Wu and W. Z. Shen, "Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membranes," Applied Physics Letters, 2004.
[42] Y. A. Y. Chiba, K. Sasaki and M. Kawamura, "Formation process of Al2O3 thin film by reactive sputtering," Department of Materials Science,Kitami Institute of Technology,Japan, 2006.
[43] "The Composition and Physical Properties of LPCVD Silicon Nitride Deposited with Different NH3/SiH2Cl2 Gas Ratios , IBM General Technology Division, Essex Junction " Journal of Electronic Materials vol. 132, 2007.
[44] "Metal-Assisted Chemical Etching of Silicon: A Review," Adv. Mater, 2011.
[45] "Process Conditions for Improvement of Electrical Properties of Al2O3/n-GaN Structures Prepared by Atomic Layer Deposition " Japan Science and Technology Agency, 2010.
[46] "XPS study of sputtered alumina thin films," Ceramics International 2014.