研究生: |
李知齊 Lee, Zhichi |
---|---|
論文名稱: |
親核基化合物製備奈米石墨烯製程研究 Direct Exfoliation of Graphite into Nanoscale Graphene Sheets using Nucleophilc Compound |
指導教授: | 譚世特 |
口試委員: |
許銘華
江孟丹 譚世特 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 石墨烯 、親核基化合物 、分散 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
2004年發現石墨烯因具優越的電氣及機械性質,引起全球科學家的興趣和研究,無數的製程被報導。根據文獻回顧分析:溶液中直接剝離(exfoliate)石墨(graphite)是較簡單且具量產可行性的方法,其中以溶劑N-methyl- 2-pyrrolidone (NMP)直接剝離(Exfoliate)石墨效果最佳,且產率遠高於加入界面活性劑(Surfactant)之NMP。本研究分析並假設含N的親核基(Nucleophile)應是造成石墨烯穩定分散之重要關鍵,接續選用Polyetheramine、Tetrapentamine等高分子工業原料進行實驗,並經XRD、TEM、AFM等驗證,確實可以製備奈米尺度石墨烯並維持穩定分散,同時對分子量、分子構型(configuration)、濃度(concentration)、處理時間(總功 work)、處理能量(功率 power)及不同親核基化合物效果均做了完整探討。
由實驗結果顯示:分子量愈小的奈米分散效率愈佳、分子構型不同會影響奈米分散速率、濃度越高奈米分散時間越長、功率較大之超音波震盪(ultrasonication)設備可縮短奈米分散時間、其它具有親核基化合物,如DGEBA(Diglycidyl ether bisphenol A)亦可維持奈米尺度石墨之穩定分散,但是處理時間並不相同。
本研究已充分驗證適當之親核基化合物,可直接剝離(Exfoliate)石墨製成石墨烯,且能維持穩定分散,同時石墨烯含量至少可達15 %,對石墨烯提供一有效且成本低廉之製備方法,對加速石墨烯之應用應有所助益。
1. K. S. Novoselov, etc., “Electric Field Effect in Atomically Thin Carbon Films,” SCIENCE, vol. 306, 22 October 2004, pp. 666.
2. Katherine Bourzac, “Self-Powered Flexible Electronics,” Technology Review (Websites of MIT), April 30, 2010.
3. Rod Ruoff, “Graphene Calling all chemists,” Nature Nanotechnology, vol. 3, January 2008, pp. 10.
4. K. S. Novoselov, “The rise of grapheme,” Nat. Mater., 2007, pp. 183.
5. Ming Zhang, “Production of Graphene Sheets by Direct Dispersion withAromatic Healing Agents,” small 2010, No. 10, pp. 1100.
6. 莊鎮宇, “石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,” 物理雙月刊 2011, pp. 155.
7. M. Vittori Antisari, “Low energy pure shear milling: A method for the preparation of graphite nano-sheets,” Elsevier Ltd., 2006, on behalf of Acta Materialia Inc.
8. 林冠君, “石墨烯中超快載子動力學研究,” 物理專文, 2011.
9. Sciscape, “Graphene新應用--液晶顯示器,” Apr. 08, 2008.
10. Peter Blake, “Graphene-Based Liquid Crystal Device,” School of Computer Science, University of Manchester, Manchester, M13 9PL, UK.
11. Sukanta De, “Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions,” Small, No. 3, 2010, pp. 458.
12. Haixin Chang, “A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode,” Adv. Funct. Mater., 2010, pp. 2893.
13. "LCDs might be graphene's first realistic commercial application.” Available: http://www.nanowerk.com/spotlight/spotid=5453.php
14. Available: http://www.substech.com
15.William S. Hummer, “Preparation of Graphitic Oxide,” Chem., Soc., vol. 80, 1958, pp. 1339.
16. Wei Wei Liu, “Direct exfoliation of graphene in organic solvents with addition of NaOH,” Chem. Commun., vol. 47, 2011, pp. 6888.
17. Sungjin Park, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 4, April 2009.
18. Daniela C. Marcano, “Improved Synthesis of Graphene Oxide,” Acsnano. vol. 4, No.8, 2010.
19. McAllister, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite,” M. J. etc., Chem. Mater., vol. 19, 2007, pp. 4396–4404.
20. Schniepp. H. C. etc., “Functionalized single graphene sheets derived from splitting graphite oxide,” J. Phys. Chem., 2006, pp. 8535.
21. Wufeng Chen, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon, vol. 48, 2010, pp. 1146.
22. Yanyu Liang, “Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions,” Wiley, vol. 21, 2009, pp. 1679.
23. Regis Y N Gengler, “A roadmap to high quality chemically prepared graphene,” J. Phys. D: Appl. Phys. 43, 2010, pp. 374015.
24. Guoxiu Wang, “Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets,” Carbon, vol. 47, 2009, pp. 1359.
25. Olga V. Pupysheva, “Modeling Direct Exfoliation of Nanoscale Graphene Platelets,” J. Phys. Chem., vol. 114, 2010, pp. 21083.
26. Jong Hak Lee, “The Superior Dispersion of Easily Soluble Graphite,” Small 2010, vol. 6, No. 1, pp. 58.
27. Xu Cui, “Liquid-phase exfoliation, functionalization and applications of grapheme,” Nanoscale, 2011, vol. 3, pp. 2118-2126.
28. Catharina Knieke, “Scalable production of graphene sheets by mechanical delamination,” Carbon, vol. 48, 2010, pp. 3196.
29. Mustafa Lotya, “Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions,” J. AM. CHEM. SOC., 2009, vol. 131, pp. 3611.
30. Sajini Vadukumpully, “Cationic surfactant mediated exfoliation of graphite into graphene flakes,” Carbon, vol. 47, 2009, pp. 3288.
31. Xavier Kornmann, “Synthesis and Characterisation of Thermoset-Clay Nanocomposites,” Division of Polymer EngineeringLule University of Technology.
32. Available: http://www.graphene.gatech.edu/
33. Claire Berger, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,” J. Phys. Chem., 2004, vol. 108, pp. 19912.
34. G. D. Yuan, “Graphene sheets via microwave chemical vapor deposition,” Chemical Physics Letters, 467, 2009, pp. 361.
35. 陳姿吟助理、李連忠副研究員, “以化學氣相沉積法成長大面積之石墨烯,” 中央研究院週報 1342期.
36. V. Sridhar, “Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation,” Carbon, vol. 48, 2010, pp. 2953.
37. Xiqing Wang, et al., “Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids,” Chem. Commun., 2010, vol. 46, pp. 448.
38. Xiaoyan Zhang, et al., “ Dispersion of graphene in ethanol using a simple solvent exchange method ,” Chem. Commun., 2010, vol. 46, pp. 7539.
39. Amelie Catheline, et al., “graphene solution,” Chem. Commun., 2011, vol. 47, pp. 5470.
40. Daniele Nuvoli, et. al, “High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid,” J. Mater. Chem., 2011, vol. 21, pp. 3428.
41. Y. Hernandez, A. C. Ferrari and J. N. Coleman, “High yield production of graphene by liquid phase exfoliation of grapheme,” Nat. Nanotechnol,” 2008, vol. 3, pp. 563.
42. Chun-Nan Chen, et al., “Surfactant-assisted de-agglomeration of graphite nanoparticles by wet ball mixing ,” Journal of Materials Processing Technology, vol. 190, 2007, pp. 61.
43. Jianxin Geng, et al., “Preparation of graphene relying on porphyrin exfoliation of graphite,” Chem, Commun., 2010, vol. 46, pp. 5091.
44. Presented by Patrick Lain, “Principles of Wetting & Dispersing for Solvent-based, Solvent-free & Water-based Systems,” BYK USA Inc.
45. “The impact of colloid science,” Royal Society of Chemistry. Available: http://www.rsc.org/chemistryworld/Issues/2003/February/science.asp
46. Yoshitsugu Kojima, “Mechanical properties of nylon 6-clay hybrid,” J. Mater. Res., Vol. 8, No. 5, May 1993.
47. Arimitsu Usuki, “Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam,” J. Mater. Res., Vol. 8, No. 5, May 1993.
48. Arimitsu Usuki, “Synthesis of nylon 6-clay hybrid,” J. Mater. Res., Vol. 8, No. 5, May 1993.
49. Zhen Wang, Tie Lan, and Thomas J. Pinnavaia, “Hybrid Organic-Inorganic Nanocomposites Formed from an Epoxy Polymer and a Layered Silicic Acid(Magadiite),” Chem. Mater. 1996, 8, pp. 2200-2204.
50. L. Nielsen, “The Thermal and Electrical Conductivity of Two-Phase Systems,” Ind. Eng. Chem. Fund., 13,1974., pp. 17.
51. L. Nielsen, “Generalized Eqnation for the Elastic Moduli of Coniposite Materials,” J. Appl. Phys., Vol. 41, 11, 1970, pp. 4626-4627
52. L. Nielsen, “Thermal Conductivity of Particulate-Filled Polymers” J. Appl. Polym. Sci.,Vol. 17, 12,1973, pp. 3819-3820
53. Muh S. Wang and Thomas J. Pinnavaia, “Clay-Polymer Nanocomposites Formed from Acidic,” Chem. Mater. 1994, 6, pp. 468-474.
54. Tie Lan and Thomas J. Pinnavaia, “Clay-Reinforced Epoxy Nanocomposites,” Chem. Mater. 1994, 6, pp. 2216-2219.
55. Tie Lan, Padmananda D. Kaviratna, and Thomas J. Pinnavaia, “Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites,” Chem. Mater., 1995, 7, pp. 2144-2150.
56. Hengzhen Shi, Tie Lan, and Thomas J. Pinnavaia, “Interfacial Effects on the Reinforcement Properties of Polymer-Organoclay Nanocomposites,” Chem. Mater., 1996, 8, pp. 1584-1587.
57. 林麗娟, “X光繞射原理及其應用,” 工業材料86期p.100
58. 鄭信民, “X光繞射應用簡介,” 工業材料181期 91年1月
59. “岩石樣本成分分析” available: http://www.gl.ntu.edu.tw/course/94_1/10-27-01.doc
60. 羅聖全 博士, “研發奈米科技的基本工具之一 電子顯微鏡介紹—TEM,”清華大學.
61.“清華大學貴儀中心.”available: http://www.nscric.nthu.edu.tw/EM/hrtem/hrtem.html
62.“原子力顯微鏡(Atomic Force Microscopy)成像原理與中文簡易操作手冊” 成功大學醫學工程所生醫感測實驗室
63.“Welcome to Atoms In Motion.” available: http://www.atomsinmotion.com)