簡易檢索 / 詳目顯示

研究生: 李知齊
Lee, Zhichi
論文名稱: 親核基化合物製備奈米石墨烯製程研究
Direct Exfoliation of Graphite into Nanoscale Graphene Sheets using Nucleophilc Compound
指導教授: 譚世特
口試委員: 許銘華
江孟丹
譚世特
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 48
中文關鍵詞: 石墨烯親核基化合物分散
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    2004年發現石墨烯因具優越的電氣及機械性質,引起全球科學家的興趣和研究,無數的製程被報導。根據文獻回顧分析:溶液中直接剝離(exfoliate)石墨(graphite)是較簡單且具量產可行性的方法,其中以溶劑N-methyl- 2-pyrrolidone (NMP)直接剝離(Exfoliate)石墨效果最佳,且產率遠高於加入界面活性劑(Surfactant)之NMP。本研究分析並假設含N的親核基(Nucleophile)應是造成石墨烯穩定分散之重要關鍵,接續選用Polyetheramine、Tetrapentamine等高分子工業原料進行實驗,並經XRD、TEM、AFM等驗證,確實可以製備奈米尺度石墨烯並維持穩定分散,同時對分子量、分子構型(configuration)、濃度(concentration)、處理時間(總功 work)、處理能量(功率 power)及不同親核基化合物效果均做了完整探討。
    由實驗結果顯示:分子量愈小的奈米分散效率愈佳、分子構型不同會影響奈米分散速率、濃度越高奈米分散時間越長、功率較大之超音波震盪(ultrasonication)設備可縮短奈米分散時間、其它具有親核基化合物,如DGEBA(Diglycidyl ether bisphenol A)亦可維持奈米尺度石墨之穩定分散,但是處理時間並不相同。
    本研究已充分驗證適當之親核基化合物,可直接剝離(Exfoliate)石墨製成石墨烯,且能維持穩定分散,同時石墨烯含量至少可達15 %,對石墨烯提供一有效且成本低廉之製備方法,對加速石墨烯之應用應有所助益。


    目 錄 1. 前言 1 2. 文獻回顧 2 2.1. 石墨烯(Graphene)發現與應用 2 2.2. 現行製程分類 3 2.2.1. 機械法(Mechanical Exfoliation Method) 3 2.2.2. 氧化還原法 (Reduced Graphene Oxidie Method) 4 2.2.3. 化學插層法(Chemical Intercalation Method) 5 2.2.4. 化學氣相沉積法(Chemical vapor deposition method) 8 2.3. 分散機制 10 3. 研究動機與研究方向 13 3.1研究動機 13 3.2 研究方向 14 3.3 驗證方法 15 3.3.1 X-射線繞射儀 (X-ray diffratometer) 15 3.3.2 穿透式電子顯微鏡(Transmission Electron Microscopy) 17 3.3.1 原子力顯微鏡 (Atomic Force Microscopy) 18 4. 實驗規劃與步驟 20 4.1 實驗規劃 20 4.2 藥品與設備 21 4.2.1 藥品 21 4.2.2 設備 22 4.2.3 驗證儀器 23 4.3. 實驗步驟 24 4.3.1 配料 24 4.3.2 試片製作流程 32 5. 結果與討論 33 5.1 XRD靈敏度測試 33 5.2超音波震盪時間對石墨剝離效果 34 5.3超音波功率(能量)對石墨剝離效果 35 5.4濃度與石墨剝離時間關係 36 5.5 親核基化合物之分子量對石墨剝離效果的影響 37 5.6 親核基化合物之分子構型對石墨剝離的影響 38 5.7其它親核基化合物對石墨剝離的影響 39 5.8 形態學探討 40 6. 結論 42 參考文獻 43 圖 目 錄 圖2-1 石墨結構 3 圖2-2 氧化石墨烯結構 4 圖2-3 Sodium dodecylbenzene sulfonate 插層石墨 5 圖2-4:溶液中粒子分散與再凝聚 10 圖2-5 分散能量示意圖 12 圖2-6 空間位阻障礙 12 圖3-1 X光繞射示意圖 16 圖3-2 石墨(002)隨時間變化圖 17 圖3-3 清華大學穿透式電子顯微鏡 18 圖3-4 原子吸引力能量關係圖 19 圖4-1 Polyetheramine 結構 22 圖4-2Tetraethylene pentamine 結構 22 圖5-1 XRD 靈敏度測試 33 圖5-2 超音波震盪時間與石墨粉剝離(Exfoliate)關係 34 圖5-3 XRD 超音波功率(能量)與時間關係 35 圖5-4 XRD 濃度與超音波震盪處理時間的關係 36 圖5-4 XRD 分子量與剝離(Exfoliate)效果的影響 37 圖5-6 XRD 分子構型比較 38 圖5-7 XRD 驗證親核基(Epon Resin 828)對石墨剝離效果 39 圖5-8 TEM 驗證石墨剝離(Exfoliate) 40 圖5-9 AFM 驗證石墨剝離(Exfoliate) 41 表 目 錄 表2-1:化學插層法各種溶劑、界面活性劑與產率統計 7 表2-2:現行製程優缺點比較 9

    1. K. S. Novoselov, etc., “Electric Field Effect in Atomically Thin Carbon Films,” SCIENCE, vol. 306, 22 October 2004, pp. 666.
    2. Katherine Bourzac, “Self-Powered Flexible Electronics,” Technology Review (Websites of MIT), April 30, 2010.
    3. Rod Ruoff, “Graphene Calling all chemists,” Nature Nanotechnology, vol. 3, January 2008, pp. 10.
    4. K. S. Novoselov, “The rise of grapheme,” Nat. Mater., 2007, pp. 183.
    5. Ming Zhang, “Production of Graphene Sheets by Direct Dispersion withAromatic Healing Agents,” small 2010, No. 10, pp. 1100.
    6. 莊鎮宇, “石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,” 物理雙月刊 2011, pp. 155.
    7. M. Vittori Antisari, “Low energy pure shear milling: A method for the preparation of graphite nano-sheets,” Elsevier Ltd., 2006, on behalf of Acta Materialia Inc.
    8. 林冠君, “石墨烯中超快載子動力學研究,” 物理專文, 2011.
    9. Sciscape, “Graphene新應用--液晶顯示器,” Apr. 08, 2008.
    10. Peter Blake, “Graphene-Based Liquid Crystal Device,” School of Computer Science, University of Manchester, Manchester, M13 9PL, UK.
    11. Sukanta De, “Flexible, Transparent, Conducting Films of Randomly Stacked Graphene from Surfactant-Stabilized, Oxide-Free Graphene Dispersions,” Small, No. 3, 2010, pp. 458.
    12. Haixin Chang, “A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode,” Adv. Funct. Mater., 2010, pp. 2893.
    13. "LCDs might be graphene's first realistic commercial application.” Available: http://www.nanowerk.com/spotlight/spotid=5453.php
    14. Available: http://www.substech.com
    15.William S. Hummer, “Preparation of Graphitic Oxide,” Chem., Soc., vol. 80, 1958, pp. 1339.
    16. Wei Wei Liu, “Direct exfoliation of graphene in organic solvents with addition of NaOH,” Chem. Commun., vol. 47, 2011, pp. 6888.
    17. Sungjin Park, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 4, April 2009.
    18. Daniela C. Marcano, “Improved Synthesis of Graphene Oxide,” Acsnano. vol. 4, No.8, 2010.
    19. McAllister, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite,” M. J. etc., Chem. Mater., vol. 19, 2007, pp. 4396–4404.
    20. Schniepp. H. C. etc., “Functionalized single graphene sheets derived from splitting graphite oxide,” J. Phys. Chem., 2006, pp. 8535.
    21. Wufeng Chen, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon, vol. 48, 2010, pp. 1146.
    22. Yanyu Liang, “Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions,” Wiley, vol. 21, 2009, pp. 1679.
    23. Regis Y N Gengler, “A roadmap to high quality chemically prepared graphene,” J. Phys. D: Appl. Phys. 43, 2010, pp. 374015.
    24. Guoxiu Wang, “Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets,” Carbon, vol. 47, 2009, pp. 1359.
    25. Olga V. Pupysheva, “Modeling Direct Exfoliation of Nanoscale Graphene Platelets,” J. Phys. Chem., vol. 114, 2010, pp. 21083.
    26. Jong Hak Lee, “The Superior Dispersion of Easily Soluble Graphite,” Small 2010, vol. 6, No. 1, pp. 58.
    27. Xu Cui, “Liquid-phase exfoliation, functionalization and applications of grapheme,” Nanoscale, 2011, vol. 3, pp. 2118-2126.
    28. Catharina Knieke, “Scalable production of graphene sheets by mechanical delamination,” Carbon, vol. 48, 2010, pp. 3196.
    29. Mustafa Lotya, “Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions,” J. AM. CHEM. SOC., 2009, vol. 131, pp. 3611.
    30. Sajini Vadukumpully, “Cationic surfactant mediated exfoliation of graphite into graphene flakes,” Carbon, vol. 47, 2009, pp. 3288.
    31. Xavier Kornmann, “Synthesis and Characterisation of Thermoset-Clay Nanocomposites,” Division of Polymer EngineeringLule University of Technology.
    32. Available: http://www.graphene.gatech.edu/
    33. Claire Berger, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,” J. Phys. Chem., 2004, vol. 108, pp. 19912.
    34. G. D. Yuan, “Graphene sheets via microwave chemical vapor deposition,” Chemical Physics Letters, 467, 2009, pp. 361.
    35. 陳姿吟助理、李連忠副研究員, “以化學氣相沉積法成長大面積之石墨烯,” 中央研究院週報 1342期.
    36. V. Sridhar, “Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation,” Carbon, vol. 48, 2010, pp. 2953.
    37. Xiqing Wang, et al., “Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids,” Chem. Commun., 2010, vol. 46, pp. 448.
    38. Xiaoyan Zhang, et al., “ Dispersion of graphene in ethanol using a simple solvent exchange method ,” Chem. Commun., 2010, vol. 46, pp. 7539.
    39. Amelie Catheline, et al., “graphene solution,” Chem. Commun., 2011, vol. 47, pp. 5470.
    40. Daniele Nuvoli, et. al, “High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid,” J. Mater. Chem., 2011, vol. 21, pp. 3428.
    41. Y. Hernandez, A. C. Ferrari and J. N. Coleman, “High yield production of graphene by liquid phase exfoliation of grapheme,” Nat. Nanotechnol,” 2008, vol. 3, pp. 563.
    42. Chun-Nan Chen, et al., “Surfactant-assisted de-agglomeration of graphite nanoparticles by wet ball mixing ,” Journal of Materials Processing Technology, vol. 190, 2007, pp. 61.
    43. Jianxin Geng, et al., “Preparation of graphene relying on porphyrin exfoliation of graphite,” Chem, Commun., 2010, vol. 46, pp. 5091.
    44. Presented by Patrick Lain, “Principles of Wetting & Dispersing for Solvent-based, Solvent-free & Water-based Systems,” BYK USA Inc.
    45. “The impact of colloid science,” Royal Society of Chemistry. Available: http://www.rsc.org/chemistryworld/Issues/2003/February/science.asp
    46. Yoshitsugu Kojima, “Mechanical properties of nylon 6-clay hybrid,” J. Mater. Res., Vol. 8, No. 5, May 1993.
    47. Arimitsu Usuki, “Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam,” J. Mater. Res., Vol. 8, No. 5, May 1993.
    48. Arimitsu Usuki, “Synthesis of nylon 6-clay hybrid,” J. Mater. Res., Vol. 8, No. 5, May 1993.
    49. Zhen Wang, Tie Lan, and Thomas J. Pinnavaia, “Hybrid Organic-Inorganic Nanocomposites Formed from an Epoxy Polymer and a Layered Silicic Acid(Magadiite),” Chem. Mater. 1996, 8, pp. 2200-2204.
    50. L. Nielsen, “The Thermal and Electrical Conductivity of Two-Phase Systems,” Ind. Eng. Chem. Fund., 13,1974., pp. 17.
    51. L. Nielsen, “Generalized Eqnation for the Elastic Moduli of Coniposite Materials,” J. Appl. Phys., Vol. 41, 11, 1970, pp. 4626-4627
    52. L. Nielsen, “Thermal Conductivity of Particulate-Filled Polymers” J. Appl. Polym. Sci.,Vol. 17, 12,1973, pp. 3819-3820
    53. Muh S. Wang and Thomas J. Pinnavaia, “Clay-Polymer Nanocomposites Formed from Acidic,” Chem. Mater. 1994, 6, pp. 468-474.
    54. Tie Lan and Thomas J. Pinnavaia, “Clay-Reinforced Epoxy Nanocomposites,” Chem. Mater. 1994, 6, pp. 2216-2219.
    55. Tie Lan, Padmananda D. Kaviratna, and Thomas J. Pinnavaia, “Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites,” Chem. Mater., 1995, 7, pp. 2144-2150.
    56. Hengzhen Shi, Tie Lan, and Thomas J. Pinnavaia, “Interfacial Effects on the Reinforcement Properties of Polymer-Organoclay Nanocomposites,” Chem. Mater., 1996, 8, pp. 1584-1587.
    57. 林麗娟, “X光繞射原理及其應用,” 工業材料86期p.100
    58. 鄭信民, “X光繞射應用簡介,” 工業材料181期 91年1月
    59. “岩石樣本成分分析” available: http://www.gl.ntu.edu.tw/course/94_1/10-27-01.doc
    60. 羅聖全 博士, “研發奈米科技的基本工具之一 電子顯微鏡介紹—TEM,”清華大學.
    61.“清華大學貴儀中心.”available: http://www.nscric.nthu.edu.tw/EM/hrtem/hrtem.html
    62.“原子力顯微鏡(Atomic Force Microscopy)成像原理與中文簡易操作手冊” 成功大學醫學工程所生醫感測實驗室
    63.“Welcome to Atoms In Motion.” available: http://www.atomsinmotion.com)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE