簡易檢索 / 詳目顯示

研究生: 周皓眾
Chou, Hao-Chung
論文名稱: 一個應用於短程雷達網絡的射頻單端口混頻器優先級雙工收發器
A Single-RF-Port Mixer-First Duplexing Transceiver for Short-Range Radar Networks
指導教授: 朱大舜
Chu, Ta-Shun
口試委員: 孟慶宗
Meng, Chin-Chun
王毓駒
Wang, Yu-Jiu
黃柏鈞
Huang, Po-Chiun
謝秉璇
Hsieh, Ping-Hsuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 141
中文關鍵詞: S頻段單天線頻率調變連續波雷達雙工收發器單端口雙工射頻前端連續波雷達頻率調變連續波雷達被動混頻器混頻器優先級收發器無線感測無線通訊
外文關鍵詞: S-band single-antenna FMCW radar, duplexing transceiver, single-port duplex RF front-end, CW radar, frequency-modulated continuous-wave radar, passive mixer, mixer-first transceiver, wireless sensing, Wireless communication
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷達,是“radio detection and ranging”的縮寫及音譯。將電磁能量以定向方式發射至空間之中,藉由目標物對電磁波的散射或反射波,可以計算出該物體方向、高度、速度,甚至物體的形狀。
    近年來隨著物聯網(IOT)應用範圍不斷擴大,許多物聯網應用依靠嵌入式傳感器執行關鍵測量任務,或作為控制電路的重要組成部分。物聯網的概念以無線傳感網絡為基礎,新型傳感器的開發可實現新的應用。而現今雷達傳感器已成為物聯網和嵌入式設計中的重要設計單元。雷達網絡可以是無線傳感器的重要分支,用於檢測環境中物體的位置、速度和軌跡。雷達通過任何項目的連接,智能地識別後,能定位、跟踪、監控、管理、信息交換和通信。
    一個雷達網絡包含多個雷達節點以重疊區域的覆蓋範圍。它分兩個階段運作,信息收集和信息檢索。本地雷達從環境中收集數據,然後將數據傳遞到外部世界進行數據處理。因此,每個雷達節點必須具有傳感和通信能力。
    本論文提出了一個無線感測通訊單元。在無線感測中,此單元能做為FMCW雷達使用,偵測目標物距離。在無線通訊中,此單元則能支持BASK,BPSK和BFSK等調變互相通訊,彼此聯繫形成網路。而本論文所提出並之應用於短程雷達網絡的射頻單端口混頻器優先級雙工收發器,發射端與接收端能同時收發,並以單一天線進行電磁波的發射與接收。主要組成電路有射頻前端電路、單端轉雙端電路、可變增益放大器、抗混疊濾波器、類比數位轉換器與鎖相迴路。本論文提出之收發器面積消耗為2.85mm2,消耗功率為190mW,操作頻率範圍為3.1GHz~3.6GHz。內文開頭會先介紹雷達網路並依雷達天線種類加以比較,接著依序講解數學模型、設計流程,提出電路架構之模擬結果、量測考量,最後對於電路提出結論與展望。


    Radar, is the abbreviation and transliteration of “radio detection and ranging”. Electromagnetic energy is emitted into the space in a direction, so the position, height and velocity of the object, and even the shape of the object, can be calculated by electromagnetic waves scattered or reflected from the object.
    In recent years, Internet of Things (IoT) has expanding. Embedded sensors are not only being viewed as important control circuit parts but also being used by many IoT in crucial measurements.
    The concept of the Internet of Things is based on wireless sensor networks, and the development of new sensors has made new applications possible. Nowadays, radar sensors have become an important design unit for IoT and embedded design. Radar networks is an important branch of wireless sensors to detect the location, velocity and trajectory of objects in the environment. Through the connection of any item, radar exchanges information to achieve intelligent identification, and then locate, track, monitor and manage signal.
    A radar network contains multiple radar nodes to overlap area coverage. The network operates in two phases, information gathering and information retrieval. A local radar collects data from the environment and then passes the data to the outside world for data processing. Therefore, each radar node must have the capacity of sensing and communication.
    This dissertation proposes a wireless sensing communication unit. In wireless sensing, this unit can be used as a FMCW radar to detect target distance. In wireless communication, this unit can support BASK, BPSK and BFSK to communicate and connect with each other to form a network. The RF single-port mixer-first duplex transceiver proposed in this dissertation is applied on short-range radar networks. The transmitter and receiver can transmit and receive simultaneously, and electromagnetic waves are transmitted and received by a single antenna. The main circuit components are RF front-end circuits, single-ended to double-ended circuits, variable gain amplifiers, anti-aliasing filters, analog-to-digital converters and phase-locked loops. The transceiver area consumption proposed in this paper is 2.85mm2, the power consumption is 190mW, and the operating frequency range is 3.1GHz~3.6GHz. The dissertation begins with an introduction to the radar network and compares radar antenna types. Next, I will explain the mathematical model, the design flow, the simulation results of the circuit architecture, the measurement considerations. At last, I will make a conclusion and further work on circuit.

    摘要 Abstract 誌謝 Contents List of Figure List of Table 1. Introduction----------------------------------------------------1 1.1 Introduction to Radar Network----------------------------------1 1.2 Review of RF Frontend Architecture for Radar System------------3 1.3 Dissertation Outline-------------------------------------------5 2. Concept of Single-RF-Port Mixer-First Duplexing Transceiver-----6 2.1 Structure and Operation of the proposed Mixer-First Duplexing Frontend-----------------------------------------------------------6 2.2 Basic Parameter of the proposed Mixer-First Duplexing Frontend ------------------------------------------------------------------10 2.2.1 Input Impedance---------------------------------------------11 2.2.2 Down-Conversion Gain----------------------------------------13 2.2.3 RF-Output Power and Power Efficiency------------------------15 2.2.4 Noise Factor and RF-Output Power----------------------------17 2.3 Radar Link Budge----------------------------------------------19 3. Design of Concept of Single-RF-Port Mixer-First Duplexing Transceiver-------------------------------------------------------24 3.1 RF Frontend Circuit-------------------------------------------26 3.2 Single-ended to Differential Circuit--------------------------29 3.3 Variable Gain Amplifier Circuit-------------------------------32 3.4 Anti-Aliasing Filter------------------------------------------36 3.5 SAR Analog to Digital Converter-------------------------------38 3.6 Phase Locked Loop---------------------------------------------45 4. Experiment Results---------------------------------------------55 4.1 Chip Performance Characterization-----------------------------55 4.2 Radar Measurement Results-------------------------------------59 4.3 FMCW Measurement Results--------------------------------------69 4.4 Wireless Communication Setup----------------------------------74 4.4.1 BASK Wireless-Communication---------------------------------75 4.4.2 BPSK Wireless-Communication---------------------------------77 4.4.3 BFSK Wireless-Communication---------------------------------82 5. Conclusions and Directions for Future Work---------------------86 5.1 Summary-------------------------------------------------------86 5.2 Direction of Future Work--------------------------------------88 Bibliography------------------------------------------------------89 Appendix----------------------------------------------------------95 A.1 Circuit Schematic---------------------------------------------95 A.2 Boundary Condition--------------------------------------------96 A.3 Down-Conversion Gain------------------------------------------98 A.4 Input Resistance ZRF-----------------------------------------113 A.5 Noise Figure-------------------------------------------------133 A.6 Output Power and Power Efficiency----------------------------136

    1. Y. Wang and Y. Zheng, “An FMCW radar transceiver chip for object positioning and human limb motion detection,” IEEE Sensors J., vol. 17, no. 2, pp. 236–237, Jan. 2017.
    2. Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE Multimedia Mag., vol. 19, no. 2, pp. 4–10, Feb. 2012.
    3. P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital-sign detection Doppler radar based on phase locked self-injection oscillator,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3.
    4. A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensorbased systems for health monitoring and prognosis,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 1, pp. 1–12, Jan. 2010.
    5. M.-S. Lee and Y.-H. Kim, “Design and performance of a 24-GHz switch antenna array FMCW radar system for automotive applications,” IEEE Trans. Veh. Technol., vol. 59, no. 5, pp. 2290–2297, Jun. 2010.
    6. H. Jia et al., “A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar,” IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2299–2311, Oct. 2016.
    7. A. Bourdoux, U. Ahmad, D. Guermandi, S. Brebels, A. Dewilde, and W. Van Thillo, “PMCW waveform and MIMO technique for a 79 GHz CMOS automotive radar,” in Proc. IEEE Radar Conf., May 2016, pp. 1–5.
    8. B. P. Ginsburg et al., “A multimode 76-to-81 GHz automotive radar transceiver with autonomous monitoring,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 158–160.
    9. P. Park, D. H. Shin and C. P. Yue, “High-Linearity CMOS T/R Switch Design Above 20 GHz Using Asymmetrical Topology and AC-Floating Bias,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 4, pp. 948–956, April. 2009.
    10. W.-C. Lai and H.-R. Chuang, “A 40–110 GHz high-isolation CMOS traveling-wave T/R switch by using parallel inductor,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3.
    11. J. Zhou, N. Reiskarimian, and H. Krishnaswamy, “Receiver with integrated magnetic-free N-path-filter-based non-reciprocal circulator and baseband self-interference cancellation for full-duplex wireless,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Jan./Feb. 2016, pp. 178–180
    12. C. Liu et al., “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp.731-740, 2010.
    13. V. Giannini et al., “An 820µW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 238-239, Feb. 2008.
    14. F. Kuttner, “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-µm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 176-177, Feb. 2002.
    15. T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto,“A 77 GHz 90 nm CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928–937, Apr. 2010.
    16. C. Wagner, A. Stelzer, and H. Jager, “PLL architecture for 77-GHz FMCW radar systems with highly-linear ultra-wideband frequency sweeps,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 399–402.
    17. C.-K. C. Tzuang et al., “An X-band CMOS multifunction-chip FMCW radar,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 2011–2014.
    18. Y. Kim et al., “A Ku-band CMOS FMCW radar transceiver for snowpack remote sensing,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2480–2494, May 2018.
    19. D. Salle et al., “A fully integrated 77GHz FMCW radar transmitter using a fractional-N frequency synthesizer,” in Proc. Eur. Radar Conf. (EuRAD), Sep./Oct. 2009, pp. 149–152.
    20. J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.
    21. A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004.
    22. P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Vital-sign detection Doppler radar based on phase locked self-injection oscillator,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3.
    23. C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 5, pp. 1410–1419, May 2010.
    24. L. Calderin, S. Ramakrishnan, A. Puglielli, E. Alon, B. Nikoli´c, and A. M. Niknejad, “Analysis and design of integrated active cancellation transceiver for frequency division duplex systems,” IEEE J. Solid-State Circuits, vol. 52, no. 8, pp. 2038–2054, Aug. 2017.
    25. Y. Han, W. Shin, and J. Lee, “Projection-based differential feedback for FDD massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 202–212, Jan. 2017.
    26. M. E. Knox, “Single antenna full duplex communications using a common carrier,” in Proc. IEEE Wireless Microw. Technol. Conf., Apr. 2012, pp. 1–6.
    27. Y. Wang, et al., “A Ku-Band 260mW FMCW Synthetic Aperture Radar TRX with
    1.48GHz BW in 65nm CMOS for Micro-UAVs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 240-241, Feb. 2016.
    28. Y.-H. Kao, H.-C. Chou, C.-C. Peng, Y.-J. Wang, B. Su, and T.-S. Chu,“A single-port duplex RF front-end for X-band single-antenna FMCW radar in 65 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 318–319.
    29. B. van Liempd et al., “A+70 dBm IIP3 single-ended electrical-balance duplexer in 0.18 μm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 1–3.
    30. T. Zhang, et al., “A 1.7-to-2.2GHz Full-Duplex Transceiver System with >50dB Self-Interference Cancellation over 42MHz Bandwidth,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 314–315, Feb. 2017.
    31. N. Reiskarimian, et al., “Highly-Linear Integrated Magnetic-Free Circulator-Receiver for Full-Duplex Wireless,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), pp. 316–317, Feb. 2017.
    32. D. Yang, et al., “A Wideband Highly Integrated and Widely Tunable Transceiver for In-band Full-Duplex Communication,” IEEE J. Solid-State Circuits, vol. 50, no. 5, pp. 1189-1202, May 2015.
    33. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, Sep. 2014.
    34. M. Duarte and A. Sabharwal, “Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results,” in Proc. 44th Conf. Rec. Asilomar Signals, Syst. Comput., Nov. 2010, pp. 1558–1562.
    35. D.-J. van den Broek, E. A. M. Klumperink, and B. Nauta, “A selfinterference-cancelling receiver for in-band full-duplex wireless with low distortion under cancellation of strong TX leakage,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 1–3.
    36. A. Tessmann, S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydl, “Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 12, pp. 2995–3001, Dec. 2002.

    QR CODE