研究生: |
張仕承 S. C. Zhang |
---|---|
論文名稱: |
固態微光學腔的製作及量測 Fabrication and Measurement of Solid State Optical Microcavities |
指導教授: |
果尚志
S. Gwo |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 光微腔體 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文一開始以光微腔體(optical micro-cavity)與量子點(quantum dots)的結合為主要起頭,由二氧化矽(SiO2)所製作出來的光微腔體扮演光學共振腔(optical resonator)的角色,而硒化鎘(CdSe)量子點(quantum dots)則為所用的光源,希望可以藉由結合兩者,進而發展成可以應用的光學元件。因此本論文將會提及共振腔的光學性質、光微腔體製程以及量子點的介紹,至於結合化學方法,是利用化學表面改質的方法將光微腔體和硒化鎘量子點結合,所以也將敘述其化學的方法與原理。
在量子點和光微腔體的結合之後,本文亦結合分子束磊晶(molecular beam epitaxy)所成長的三族氮化合物(III-N)半導體薄膜和二氧化矽光微腔體,將本實驗室所生長的材料取代容易衰退的硒化鎘(CdSe)量子點,由於激發光的能量會使硒化鎘光漂白(photo-bleaching),進而收到的光致激發螢光漸漸變弱;因此,以氮化鎵(GaN)、氮化銦(InN)或氮化銦鎵(InGaN)薄膜等等由分子束磊晶生長的發光薄膜取代硒化鎘,本實驗選擇綠光(波長為500奈米左右)的氮化銦鎵,作進一步光微腔體和三族氮化合物半導體發光層的製程以及光性探討。
除了主軸的實驗之外,本論文也會將近代光微腔體的發展以及其應用稍做介紹,也會結合一小部分光學理論的說明,因此將會在此論文中討論品質因子(Q-factor)、普塞爾因子(Purcell factor)、耳語廊模態(WGMs, whispering gallery modes)等等概念。
參考文獻
[1] Lefevre-Seguin, V. & Haroche, S. Mater. Sci. Eng. B 48, 53–58 (1997).
[2] Vernooy,D.W., Furusawa, A., Georgiades, N. P., Ilchenko,V. S. & Kimble, H. J. Phys. Rev. A 57, R2293 (1998).
[3] “Optical Processes in Microcavities” Advanced Series in Applied Physics Vol. 3, edited by Richard K Chang and Anthony J Campillo , World Scientific, Singapore (1996).
[4] Treussart, F., Ilchenko, V. S., Roch, J. F., Hare, J. Lefevre Seguin, V., Raimond, J. M., Haroche, S., Eur. Phys. J. D 1, 235 (1998).
[5] Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Nature 415, 621 (2002).
[6] R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Paerton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[7] M. Pelton, C. Santori, G. Solomon, O. Benson, and Y. Yamamoto, Eur. Phys. J. D 18, 179 (2002).
[8] P. Michler, A. Kiraz, C. Becher, L. Zhang, E. Hu, A. Imamoglu, W. Schoenfeld, and P. Petroff, Phys. Status Solidi B 224, 797 (2001).
[9] Vollmer, F. et al. Appl. Phys. Lett. 80, 4057 (2002).
[10] Serpenguzel, A., Arnold, S. & Griffel, G. Opt. Lett. 20, 654 (1995).
[11] X. Fan, P. Palinginis, S. Lacey, H. Wang, M. C. Lonergan, Opt. Lett. 25, Issue 21, 1600 (2000)
[12]Kerry J. Vahala, Nature, 424, 839 (2003)
[13] “Optical Semiconductor Devices”, edited by Mitsuo Fukuda , John Wiley & Sons, Inc.(1999).
[14] J. L. Jewell, K. F. Huang, K. Tai, Y. H. Lee, R. J. Fischer, S. L. McCall, and A. Y. Cho, Appl. Phys. Lett. 55, 424 (1989).
[15] 盧贊文、李柏璁,”光通訊波長二維光子晶體雷射發展簡介”, 物理雙月刊, 廿七卷五期, p.693,(2005).
[16] Takehiko Tawara, Hideki Gotoh, Tetsuya Akasaka, Naoki Kobayashi, and Tadashi Saitoh, Appl. Phys. Lett. 83, 830 (2003)
[17] Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, and E. L. Hu, Appl. Phys. Lett. 87, 243101 (2005).
[18] Kartik Srinivasan, Paul E. Barclay, Matthew Borselli, and Oskar Painter, Phys. Rev. B, 70, 081306 (2004).
[19] Anatoliy A. Savchenkov, Vladimir S. Ilchenko, Andrey B. Matsko, and Lute Maleki, Phys. Rev. A 70, 051804 (2004)
[20] D. K. Armani, T. J. Kippenberg, S. M. Spillane & K. J. Vahala Nature (London) 421, 925(2003)
[21] T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003)
[22] D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E.W. Streed, and H. J. Kimble, Opt. Lett. 23, 247 (1998)
[23] “Optical Microcavities” Advanced series in Applied Physics Vol. 5, edited by Kerry Vahala, World Scientific, Singapore (2004).
[24] Gorodetsky, M. L., Savchenkov, A. A. & Ilchenko, V. S. Opt. Lett. 21, 453 (1996).
[25] Vernooy, D. W., Furusawa, A., Georgiades, N. P., Ilchenko, V. S. & Kimble, H. J. Phys. Rev. A 57, R2293–R2296 (1998).
[26] Power losses in a cavity; Q of a cavity, Classical electrodynamics, third edition, Sect. 8.8, P.371, J. D. Jackson
[27] “Laser Electronics” 2nd edition , Joseph T. Verdeyen, Prentice-Hall, (1989).
[28] S. A. Empedocles, R. Neuhauser, K. Shimizu, M. G. Bawendi , Adv. Mater., 11, No. 15, 1243 (1999).
[29] J. W. Strutt, The Theory of Sound. New York: Dove, 1945. Lord Rayleigh.
[30] L. Rayleigh, Phil. Mag. 27, 100 (1914).
[31] L. Rayleigh, Phil. Mag. 20, 1001 (1910).
[32] P. Debye, Ann. Phys. 30, 57 (1909).
[33] H. -B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[34] A. J. Campillo, J. D. Eversole, and H-B. Lin, Phys. Rev. Lett. 67, 437 (1991).
[35] Władysław Z˙ akowicz, Phys. Rev. Lett. 95, 114801 (2005).
[36] Henrich Heitmann, Yoshiaki Kadota, Tsuyoshi Kawakami and Yoshihisa Yamamoto, Japen. J. Appl. Phys. 32 L1141 (1994).
[37] “固態電子學”, 呂助增, 國立編譯館 (1996)
[38] A. P. Alivisatos, Science, 271, 933 (1996)
[39]汪建明主編,”材料分析”,中華民國材料科學學會 (2001)
[40] Bing-Jing Li, Pao-Lo Liu, IEEE JOURNAL of QUANTUM ELECTRONICS, 33, No. 9 (1997)
[41] 奈米級矽場發射源之製作及物性研究,賴東彥著,國立清華大學碩士論文
[42] Goss, C. A.; Charych, D. H.; Majda, M. Anal. Chem. 63, 85 (1991)
[43] M. S. Minsky, M. White, and E. L. Hu, Appl. Phys. Lett. 68 1531-1533 (1996)
[44] Bumki Min, Sungjee Kim, Koichi Okamoto, Lan Yang, Axel Scherer, Harry Atwater, and Kerry Vahala, Appl. Phys. Lett. 89, 191124 (2006)
[45] Joseph L. Birman, Phys. Rev. 109, 810 (1958).
[46] Properties of advanced semiconductor materials. GaN, AlN, InN, BN, SiC, SiGe. Micheal E. Levinshtein, Sergy L. Rumyantsev, Michael S. Shur, p.16