研究生: |
陳奕廷 CHEN, YI-TING |
---|---|
論文名稱: |
超高靈敏度鉛離子感測器製作及模型探討 Fabrication of an Ultra-Sensitive Lead Ion FET Sensor and Investigation of the Quantitative Model |
指導教授: |
王玉麟
WANG, YU-LIN |
口試委員: |
林宗宏
LIN, ZONG-HONG 田禮嘉 TIEN, LI-CHIA |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 鉛離子 、離子選擇性場效電晶體 、高電子移動率電晶體 |
外文關鍵詞: | Lead, ISFET, HEMT |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於重金屬鉛無法被人體代謝,所以攝入的鉛離子將會逐漸堆積在體內並影響人體的神經系統。而人體內累積的鉛離子大多數來自飲用水、自來水和食物中的水,使得鉛在水中的濃度一直是人們所重視的議題。然而市面上對於鉛離子感測的技術雖然行之有年,卻難有可以兼顧靈敏度以及使用方便性的感測器出現:傳統實驗室儀器能夠達到極低的偵測極限,其操作卻極為複雜且量測非常耗時;相對地,雖然離子選擇性電極能夠更為簡便快速,卻無法量測低濃度的離子。為了能幫助助人們能以簡便的方式快速監測日常生活中的飲用水中的鉛離子濃度,本研究著重在研發一種可擁有簡便操作方式又可以靈敏的感測鉛離子的新式感測器。本實驗結合了鉛離子選擇性有機薄膜與高靈敏度、高化學抵抗力的AlGaN/GaN的HEMT晶片,在導入了界面電雙層結構,並以極短間距的外加閘極施以大電場,使得此鉛離子感測器能擁有超越傳統能斯特元件的高靈敏度與極低的偵測極限。在台灣,政府規範自來水中鉛離子濃度需小於50 ppb,換算後為2.42×10-7 M。而在本實驗結果中此新式感測器對於鉛離子的感應濃度範圍為10-10 M到10-5 M。此結果不僅廣泛涵蓋了政府對於鉛離子濃度的限制,更是得到能夠比擬傳統實驗室大型機台的極低感測極限。
Lead is an extremely hazardous heavy metal. Since it is impossible for liver to metabolize or decompose heavy metals, accumulation of lead in human body causes damage to human nervous system gradually. Thus, the detection of lead ion levels in drinking water, tap water and other liquid coming from food, the easiest way for the ingestion of lead, becomes necessary. However, the traditional laboratory methods are really complex and time consuming, and require bulky and costly machinery. On the other hand, although the electrochemical ion selective electrode can be used easily, the poor stability and high detection limit of this kind of sensor is still a big problem. In this research, a small size, highly sensitive, short response time, easy to fabricate and convenient lead ion selective high electron mobility transistor (ISHEMT) has been investigated. This new type of Pb sensor aims to make end-user easily operate in drinking water for rapid measurement. By combining ion-selective membrane with AlGaN/GaN HEMT and introducing electric double layer (EDL) structure with extremely small gap distance for external gate, a transducer with higher sensitivity than Nernst behavior can be achieved. Taiwan government suggest lead containing in tap water should be less than 50 ppb, equaling to 2.42×10-7 M. In this experiment, the dynamic range of the Pb ISHEMT sensor is from 10-10 M to 10-5 M. This result cannot only cover the objective widely, but also be comparable to the detection limit of laboratory machine, i.e. ICP-MS.
[1] J. H. Duffus, "" Heavy metals" a meaningless term?(IUPAC Technical Report)," Pure and applied chemistry, vol. 74, pp. 793-807, 2002.
[2] G. S. Shukla and R. L. Singhal, "The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese," Canadian journal of physiology and pharmacology, vol. 62, pp. 1015-1031, 1984.
[3] 何 强 , 井 文 涌 , and 王 翊 亭 , 环 境 学 导 论 : 清 华 大 学 出 版 社 有 限 公 司 , 2004.
[4] H. H. Fang, L.-C. Xu, and K.-Y. Chan, "Effects of toxic metals and chemicals on biofilm and biocorrosion," Water Research, vol. 36, pp. 4709-4716, 2002.
[5] N. Chaturvedi, M. Kajsik, S. Forsythe, and P. N. Pandey, "Protein sequences insight into heavy metal tolerance in Cronobacter sakazakii BAA-894 encoded by plasmid pESA3," Archives of microbiology, vol. 197, pp. 1141-1149, 2015.
[6] "Ten Chemicals of Major Public Health Concern." World Health Organization. World Health Organization, n.d. Web. 01 May 2017.
[7] D. M. Settle and C. C. Patterson, "Lead in albacore: guide to lead pollution in Americans," Science, vol. 207, pp. 1167-1176, 1980.
[8] P. Colbourn and I. Thornton, "Lead pollution in agricultural soils," European Journal of Soil Science, vol. 29, pp. 513-526, 1978.
[9] S. Pocock, A. Shaper, M. Walker, C. Wale, B. Clayton, T. Delves, et al., "Effects of tap water lead, water hardness, alcohol, and cigarettes on blood lead concentrations," Journal of epidemiology and community health, vol. 37, pp. 1-7, 1983.
[10] Y. Finkelstein, M. E. Markowitz, and J. F. Rosen, "Low-level lead-induced neurotoxicity in children: an update on central nervous system effects," Brain Research Reviews, vol. 27, pp. 168-176, 1998.
[11] Y.-P. Lin and R. L. Valentine, "Reduction of lead oxide (PbO2) and release of Pb (II) in mixtures of natural organic matter, free chlorine and monochloramine," Environmental science & technology, vol. 43, pp. 3872-3877, 2009.
[12] A. C. D. Santos, S. Colacciopo, C. M. Dal Bó, and N. A. G. D. Santos, "Occupational exposure to lead, kidney function tests, and blood pressure," American journal of industrial medicine, vol. 26, pp. 635-643, 1994.
[13] M.-R. Huang, X.-W. Rao, X.-G. Li, and Y.-B. Ding, "Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores," Talanta, vol. 85, pp. 1575-1584, 2011.
[14] M. B. Rabinowitz, "Toxicokinetics of bone lead," Environmental health perspectives, vol. 91, p. 33, 1991.
[15] S. M. Pyle, J. M. Nocerino, S. N. Deming, J. A. Palasota, J. M. Palasota, E. L. Miller, et al., "Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil," Environmental science & technology, vol. 30, pp. 204-213, 1995.
[16] C.-S. Lee, S. K. Kim, and M. Kim, "Ion-sensitive field-effect transistor for biological sensing," Sensors, vol. 9, pp. 7111-7131, 2009.
[17] O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures," Journal of applied physics, vol. 85, pp. 3222-3233, 1999.
[18] J. Anderson, "Malleability and Ductility of Metals," Scientific American, vol. 21, pp. 341-341, 1869.
[19] P.-C. Hsu, M.-Y. Liu, C.-C. Hsu, L.-Y. Chen, and Y. L. Guo, "Lead exposure causes generation of reactive oxygen species and functional impairment in rat sperm," Toxicology, vol. 122, pp. 133-143, 1997.
[20] C.-Y. Lee, N.-Y. Hsu, M.-Y. Wu, and Y.-W. Lin, "Microwave-assisted synthesis of BSA-stabilised gold nanoclusters for the sensitive and selective detection of lead (II) and melamine in aqueous solution," RSC Advances, vol. 6, pp. 79020-79027, 2016.
[21] C. Wong and P. Berrang, "Contamination of tap water by lead pipe and solder," Bulletin of environmental contamination and toxicology, vol. 15, pp. 530-534, 1976.
[22] G. Tyler and S. Jobin Yvon, "ICP-OES, ICP-MS and AAS Techniques Compared," ICP Optical Emission Spectroscopy Technical Note, vol. 5, 1995.
[23] 卢 兵 , 杜 少 文 , 盛 红 宇, 武 洋 , 王 耀 武, and 卢 安 民 , "AAS, ICP-AES, ICP-MS 及 XRF 测 定 地 质 样 品 中 铜 铅 锌 锰 的 对 比 研 究," 黄 金 , vol. 35, pp. 78-81, 2014.
[24] 阎 秉 峰, "离 子 选 择 性 电 极 的 工 作 原 理 ," 内 蒙 古 科 技 与 经 济, vol. 3, pp. 106-109, 2005.
[25] 陳 敬 岦 and 張 國 明 , "以 NafionTM/高 分 子 材 料 為 結 構 的 感 測 層 應 用 在 pH-ISFET 離 子 選 擇 場 效 電 晶 體 之 研 究," 2006.
[26] M. Meyerhoff and W. Opdycke, "Ion-selective electrodes," Advances in clinical chemistry, vol. 25, pp. 1-47, 1986.
[27] E. Bakker, P. Bühlmann, and E. Pretsch, "Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics," Chemical Reviews, vol. 97, pp. 3083-3132, 1997.
[28] J. Wang, Analytical electrochemistry: John Wiley & Sons, 2006.
[29] P. Bühlmann, E. Pretsch, and E. Bakker, "Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors," Chemical Reviews, vol. 98, pp. 1593-1688, 1998.
[30] W. E. Morf, The principles of ion-selective electrodes and of membrane transport vol. 2: Elsevier, 2012.
[31] H. Hirata and K. Higashiyama, "Analytical study of the lead ion-selective ceramic membrane electrode," Bulletin of the chemical society of Japan, vol. 44, pp. 2420-2423, 1971.
[32] C. M. McGraw, T. Radu, A. Radu, and D. Diamond, "Evaluation of Liquid‐and Solid‐Contact, Pb2+‐Selective Polymer‐Membrane Electrodes for Soil Analysis," Electroanalysis, vol. 20, pp. 340-346, 2008.
[33] Y. Alifragis, A. Volosirakis, N. Chaniotakis, G. Konstantinidis, A. Adikimenakis, and A. Georgakilas, "Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures," Biosensors and Bioelectronics, vol. 22, pp. 2796-2801, 2007.
[34] S. Plaza, Z. Szigeti, M. Geisler, E. Martinoia, B. Aeschlimann, D. Günther, et al., "Potentiometric sensor for the measurement of Cd 2+ transport in yeast and plants," Analytical biochemistry, vol. 347, pp. 10-16, 2005.
[35] Y. Alifragis, A. Volosirakis, N. Chaniotakis, G. Konstantinidis, E. Iliopoulos, and A. Georgakilas, "AlGaN/GaN high electron mobility transistor sensor sensitive to ammonium ions," physica status solidi (a), vol. 204, pp. 2059-2063, 2007.
[36] K. Tohda, D. Dragoe, M. Shibata, and Y. UMEZAWA, "Studies on the matched potential method for determining the selectivity coefficients of ion-selective electrodes based on neutral ionophores: experimental and theoretical verification," Analytical sciences, vol. 17, pp. 733-743, 2001.
[37] M. Guziński, G. Lisak, J. Kupis, A. Jasiński, and M. Bocheńska, "Lead (II)-selective ionophores for ion-selective electrodes: A review," Analytica chimica acta, vol. 791, pp. 1-12, 2013.
[38] C. Mihali and N. Vaum, "Use of plasticizers for electrochemical sensors," Recent Advances in Plasticizers, p. 125, 2012.
[39] M.-H. Piao, J.-H. Yoon, G. Jeon, and Y.-B. Shim, "Characterization of all solid state hydrogen ion selective electrode based on PVC-SR hybrid membranes," Sensors, vol. 3, pp. 192-201, 2003.
[40] E. Malinowska, Z. Brzózka, K. Kasiura, R. J. Egberink, and D. N. Reinhoudt, "Lead selective electrodes based on thioamide functionalized calix[4]arenes as ionophores," Analytica chimica acta, vol. 298, pp. 253-258, 1994.
[41] M. Myers, F. L. M. Khir, A. Podolska, G. A. Umana-Membreno, B. Nener, M. Baker, et al., "Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode," Sensors and Actuators B: Chemical, vol. 181, pp. 301-305, 2013.
[42] P. Bergveld, "Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology," IEEE Transactions on Biomedical Engineering, pp. 342-351, 1972.
[43] Go, Jonghyun, and Muhammad Alam. "Effect of Fluid Gate on the Electrostatics of ISFET-Based pH Sensors." Micro/Nano Symposium (UGIM), 2010 18th Biennial University/Government/Industry. IEEE, 2010.
[44] Li, Peng, et al. "Graphene field-effect transistors with tunable sensitivity for high performance Hg (II) sensing." Applied Physics Letters 109.15 (2016): 153101.
[45] Guidelli, Eder José, Elidia Maria Guerra, and Marcelo Mulato. "V2O5/WO3 mixed oxide films as pH-EGFET sensor: sequential re-usage and fabrication volume analysis." ECS Journal of Solid State Science and Technology 1.3 (2012): N39-N44.
[46] Huang, Yen-Chieh, Fu-Shou Tsai, and Shui-Jinn Wang. "Preparation of TiO2 nanowire arrays through hydrothermal growth method and their pH sensing characteristics." Japanese Journal of Applied Physics 53.6S (2014): 06JG02.
[47] Das, Atanu, et al. "Highly sensitive palladium oxide thin film extended gate FETs as pH sensor." Sensors and Actuators B: Chemical 205 (2014): 199-205.
[48] Spijkman, M., et al. "Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors." Applied Physics Letters 98.4 (2011): 043502.
[49] Liu, Chung-Chiun, et al. "A palladium-palladium oxide miniature pH electrode." Science 207.4427 (1980): 188-189.
[50] Yao, Pin-Chuan, Jung-Lung Chiang, and Ming-Chih Lee. "Application of sol–gel TiO 2 film for an extended-gate H+ ion-sensitive field-effect transistor." Solid State Sciences 28 (2014): 47-54.
[51] Hsieh, Chia-Hsu, I-Yu Huang, and Ching-Yi Wu. "A low-hysteresis and high-sensitivity extended gate FET-based chloride ion-selective sensor." Sensors, 2010 IEEE. IEEE, 2010.
[52] Bouazizi, A., et al. "Chemically modified ISFETs with thin polymer membranes working in a differential mode." Sensors and Materials 9 (1997): 149-162.
[53] Melzer, K., et al. "Selective ion-sensing with membrane-functionalized electrolyte-gated carbon nanotube field-effect transistors." Analyst 139.19 (2014): 4947-4954.
[54] Kim, Hak-Jin, et al. "Evaluation of phosphate ion-selective membranes and cobalt-based electrodes for soil nutrient sensing." Transactions of the ASABE50.2 (2007): 415-425.
[55] Yoshizawa, Naoki, Taketomo Sato, and Tamotsu Hashizume. "Fundamental Study of InP-Based Open-Gate Field-Effect Transistors for Application to Liquid-Phase Chemical Sensors." Japanese Journal of Applied Physics 48.9R (2009): 091102.
[56] Mihali, Cristina, and Nora Vaum. "Use of plasticizers for electrochemical sensors." Recent Advances in Plasticizers. InTech, 2012.
[57] Cao, Anping, et al. "Ionophore-Containing Siloprene Membranes: Direct Comparison between Conventional Ion-Selective Electrodes and Silicon Nanowire-Based Field-Effect Transistors." Analytical chemistry 87.2 (2014): 1173-1179.
[58] Eren, Hilal, et al. "Potentiometric monitoring of cobalt in beer sample by solid contact ion selective electrode." journal of food and drug analysis 22.4 (2014): 413-417.
[59] Lin, Jyh-Ling, and Hsiang-Yi Hsu. "Study of sodium ion selective electrodes and differential structures with anodized indium tin oxide." Sensors 10.3 (2010): 1798-1809.
[60] Nekoei, Mehdi, Hassan Ali Zamani, and Majed Mohammadhossieni. "Erbium (III) PVC membrane ion-selective sensor based on 4-(2-thiazolylazo) resorcinal." Analytical Letters 42.2 (2009): 284-297.
[61] Mai, Pham Thi Ngoc, and Phan Tri Hoa. "Fabrication of solid contact ion selective electrode for mercury (II) using conductive polymer membrane." Materials transactions 56.9 (2015): 1428-1430.
[62] S.-i. Wakida, N. Sato, and K. Saito, "Copper (II)-selective electrodes based on a novel charged carrier and preliminary application of field-effect transistor type checker," Sensors and Actuators B: Chemical, vol. 130, pp. 187-192, 2008.
[63] Asadnia, Mohsen, et al. "Mercury (II) selective sensors based on AlGaN/GaN transistors." Analytica chimica acta 943 (2016): 1-7.
[64] Al-Hardan, Naif H., et al. "High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor." Sensors 16.6 (2016): 839.
[65] Yates, David E., Samuel Levine, and Thomas W. Healy. "Site-binding model of the electrical double layer at the oxide/water interface." Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 70 (1974): 1807-1818.
[66] Parizi, Kokab B., et al. "Exceeding Nernst limit (59mV/pH): CMOS-based pH sensor for autonomous applications." Electron Devices Meeting (IEDM), 2012 IEEE International. IEEE, 2012.
[67] Zehfroosh, Nina, Mehran Shahmohammadi, and Shams Mohajerzadeh. "High-sensitivity ion-selective field-effect transistors using nanoporous silicon." IEEE Electron Device Letters 31.9 (2010): 1056-1058.
[68] P. L. Cobben, R. J. Egberink, J. G. Bomer, P. Bergveld, W. Verboom, and D. N. Reinhoudt, "Transduction of selective recognition of heavy metal ions by chemically modified field effect transistors (CHEMFETs)," Journal of the American Chemical Society, vol. 114, pp. 10573-10582, 1992.
[69] I. Supryadkina, K. Abgaryan, D. Bazhanov, and I. Mutigullin, "Study of the polarizations of (Al, Ga, AlGa) N nitride compounds and the charge density of various interfaces based on them," Semiconductors, vol. 47, pp. 1621-1625, 2013.
[70] P. Asbeck, E. Yu, S. Lau, G. Sullivan, J. Van Hove, and J. Redwing, "Piezoelectric charge densities in AlGaN/GaN HFETs," Electronics letters, vol. 33, pp. 1230-1231, 1997.
[71] C.-H. Chu, I. Sarangadharan, A. Regmi, Y.-W. Chen, C.-P. Hsu, W.-H. Chang, et al., "Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum," Scientific Reports, vol. 7, 2017.
[72] Regmi, Abiral, et al. "Direct detection of fibrinogen in human plasma using electric-double-layer gated AlGaN/GaN high electron mobility transistors." Applied Physics Letters 111.8 (2017): 082106.
[73] Chen, Pei-Chi, et al. "Editors' Choice—Field-Effect Transistor-Based Biosensors and a Portable Device for Personal Healthcare." ECS Journal of Solid State Science and Technology 6.7 (2017): Q71-Q76.