簡易檢索 / 詳目顯示

研究生: 張懿心
Chang, Yi-Hsin
論文名稱: 利用電漿反應進行聚乳酸聚合與二氧化碳轉化行為之研究
Study on Polymerization of Lactic Acid and Conversion of Carbon Dioxide by Plasma Activation
指導教授: 楊長謀
Chang-Mou Yang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 97
中文關鍵詞: 電漿聚乳酸生物可分解二氧化碳轉化
外文關鍵詞: plasma, poly(L-lactic acid), biodegradable, carbon dioxide, conversion
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來低溫電漿廣泛的的應用於材料合成或是化學反應製程上,電漿由高能帶電粒子組成,電子經由電場加速碰撞分子進行活化反應,生成離子也可經由電漿鞘區電場加速碰撞驅使化學反應,因此可有效提升分子反應速度。在本研究中我們利用電漿活化乳酸分子進行聚合反應,乳酸反應前驅物包含氣態單體與液態寡聚物,藉以討論前驅物型態對電漿聚合反應之影響。此外,我們也研究利用電漿技術轉化二氧化碳為可再利用之有機產物,電漿的高能電子可活化二氧化碳分子,進而與小分子進行化學反應以生成燃料。由於電漿製程具有高效率、低耗能、低污染等優點,非常適用於生醫及環保用途上。
    本論文的第一部份研究,我們利用改良電漿製程,進行高分子密度電漿聚合反應,發現經活化後乳酸單體可快速沉積成薄膜,且薄膜具有分子級平坦的表面形貌。此外,所得高分子薄膜具有交聯結構且交聯密度隨電漿功率與反應時間增加而增加,此交聯結構歸因於電漿中分子碎片重組所造成。再者,此薄膜具有良好的機械強度與細胞相容性,可適用於生醫薄膜等用途上。如改採用電漿活化液態乳酸寡聚物聚合,則主要反應路徑為酯化聚合反應,分子於吸收電漿中電子震動能後可驅使該反應進行,而實驗結果顯示,寡聚物分子量對於生成高分子的化學組成與交聯密度有顯著影響。此研究驗證藉調控電漿反應條件及反應前驅物密度,可利用電漿技術快速製備高分子。
    本研究第二部分實驗是利用電漿活化二氧化碳分子,活化後的二氧化碳分子分解為氧原子和一氧化碳自由基,可在無催化劑環境下,與碳氫小分子進行化學反應,藉由調整碳氫小分子結構可得不同化學組成之產物。研究結果顯示,產物的固體與液體含量與分子構造有關,當碳氫分子具有較多氫原子可生成較多液體產物,這是因為氫原子可飽和分子活化位置,減少長鏈分子生成機率。因此在實驗中,二氧化碳與飽和碳氫分子較與不飽和碳氫分子反應所得之液體產物含量高,固體產率隨不飽和碳氫分子中碳碳雙鍵數目增加而增加。此外,二氧化碳與雙鍵反應時具有較高的反應性,因為雙鍵的高活性可在不斷鍵下與氧原子和一氧化碳自由基反應。至於苯環分子,於開環後生成的分子碎片具有與二氧化碳良好的反應性且易形成固體產物,該高固體產率可再加入水分子進行共反應時下降。因此,此研究證明在合適的條件與共反應分子結構下,二氧化碳可在無觸媒環境,經由電漿反應轉化為有用產物。


    Low-temperature plasmas are a well-known technique for material synthesis and chemical reactions. They offer a unique combination of energetic electrons, radicals, and ions to trigger plasma chemistry efficiently. Here, we performed a modified plasma process to induce polymerization from L-lactic acid (LLA) vapors and liquid LLA oligomers. We also aimed to convert carbon dioxide (CO2) into fuels by plasma activation without using catalysts. The high-efficient, low energy waste and environmental-friendly of plasma processes are beneficial for biomedical and environmental applications.
    Firstly, novel biocompatible polymer films were derived from LLA with molecularly smooth surfaces by using a plasma deposition method significantly enhanced with higher monomer vapor densities. It was found that hydrocarbons and chain crosslinks increased relative to the oxygen-containing moieties as plasma power or reaction time increased, following a reaction scenario dominated by energy-mediated molecular scission pathways. With the hydroxyl groups being retained, the films of excellent mechanical strength were highly hydrophilic and manifested excellent biocompatibility applicable for a wide range of biomedical coatings. For the polymerization from liquid LLA oligomers, the polymerization was dominated by esterification processes activated by increased molecular vibrational energies imparted by electron bombardments from the plasma. The effects of oligomer molecular weight were studied and found useful for tailoring the properties of the final polymers. This work demonstrated the feasibility of converting common molecules to useful polymers under appropriate plasma conditions.
    Secondly, selected reactions between carbon dioxide and small hydrocarbon molecules (CnHm) of various bond structures and sizes (6≤n≤12) were investigated under plasma activation without catalysts. CO2 broke up into CO and O to form oxygenated functionalities in liquid and solid products. The liquid/solid ratio depended on plasma energy and molecular structures of the hydrocarbons. A high yield of liquids was obtained when enough hydrogen atoms were provided to saturate the active sites on CO2 and hydrocarbon fragments. Hence, the liquid yield from CO2 conversion with saturated hydrocarbons is higher than unsaturated hydrocarbons. For unsaturated hydrocarbons, the yield of solid products increases with increasing the number of C=C bonds. The bi-functional radicals produced through pi-bond dissociation can propagate into polymers easily. Such high solid yields from unsaturated hydrocarbons are able to decrease by adding water into the plasma system. In addition, the C=C bonds were found to have high activities with CO2 due to an effective recombination process of CO and O radicals with C=C bonds. This study clarifies the reaction routes for CO2 and hydrocarbon molecules under plasma activation and affords proper selections of molecules for optimal syntheses with CO2 without catalysts.

    Abstract (Chinese) I Abstract IV Acknowledgement VI Table of Contents VIII List of Figures XI List of Tables XV Chapter 1 Polymeric Thin Films from Lactic Acid by a Plasma Process 1 1-1 INTRODUCTION AND BACKGROUND REVIEW 1 1-1-1 Thin film deposition from monomer vapors 1 1-1-2 Synthesis of polymers from liquid precursors by plasma activation 3 1-2 EXPERIMENTAL METHODS 4 1-2-1 Materials 4 1-2-2 Plasma polymerization 4 1-2-3 Plasma polymerization of liquid precursors 5 1-2-4 Chemical characterization 6 1-2-5 Atomic force microscopy and nanoindentation 7 1-2-6 Contact angle measurements 8 1-2-7 Determination of chain crosslink density 9 1-2-8 Optical emission spectroscopy 9 1-2-9 Cellular compatibility 10 1-3 RESULTS AND DISCUSSION 11 1-3-1 Film growth 11 1-3-2 Chemical characterizations 14 1-3-3 Physical Properties 20 1-3-4 Reaction Routes Induced by Electron Bombardments 23 1-3-5 UV-Induced Reactions 27 1-3-6 Plasma polymerization of liquid precursors* 31 1-3-7 Cellular Compatibility 41 1-4 CONCLUSION 43 1-5 REFERENCES 44 Chapter 2 Carbon Dioxide as Raw Material for Effective Non-Catalytic Syntheses by Plasma Activation 48 2-1 INTRODUCTION AND BACKGROUND REVIEW 48 2-1-1 Global warming 48 2-1-2 Chemical recycling of carbon dioxide with catalysts 50 2-1-3 Plasma reactions of carbon dioxide 52 2-1-4 Carbon dioxide co-reacting with small molecules in plasma 55 2-2 EXPERIMENTAL METHODS 59 2-2-1 Plasma reaction 59 2-2-2 Characterizations 60 2-3 RESULTS AND DISCUSSION 61 2-3-1 Effects of plasma powers on carbon dioxide dissociation 61 2-3-2 Plasma power effects on the chemical structures of products from carbon dioxide and hexane 63 2-3-3 Product distributions from CO2 conversion with different hydrocarbons 67 2-3-4 Effects of hydrocarbon structures on CO2 conversion 74 2-3-5 Recombination routes of CO2-derived species with hydrocarbon radicals 83 2-3-6 Carbon dioxide conversion with water and hydrocarbon 89 2-3-7 Kinetic mechanisms of CO2 with hydrocarbon molecules 90 2-4 CONCLUSIONS 93 2-5 REFERENCE 95

    Chapter 1
    [1] J. O. Hollinger, Biomedical Applications of Synthetic Biodegradable Polymers, CRC Press, Boca Raton 1995.
    [2] W. Amass, A. Amass, B. Tighe, Polym. Int. 1998, 47, 89.
    [3] R. A. Gross, B. Kalra, Science 2002, 297, 803.
    [4] H. Ueda, Y. Tabata, Adv. Drug Deliv. Rev. 2003, 55, 501.
    [5] G. Q. Chena, Q. Wu, Biomaterials 2005, 26, 6565.
    [6] US filed (12/213 764), invs.: A. C. M. Yang, C. C. Chang, Y. H. Chang.
    [7] Taiwan filed (097104132), invs.: A. C. M. Yang, C. C. Chang, Y.H. Chang, in preparation.
    [8] D. Garlotta, J. Polym. Environ. 2001, 9, 63.
    [9] R. E. Drumright, P. R. Gruber, D. E. Hentron, Adv. Mater. 2000, 12, 1841.
    [10] J. J. A. Barry, D. Howard, K. M. Shakesheff, S. M. Howdle, M. R. Alexander, Adv. Mater. 2006, 18, 1406.
    [11] J. J. Barry, M. M. C. G. Silva, K. M. Shakesheff, S. M. Howdle, M. R. Alexander, Adv. Funct. Mater. 2005, 15, 1134.
    [12] L. Detomaso, R. Gristina, G. S. Senesi, R. d’Agostino, P. Favia, Biomaterials 2005, 26, 3831.
    [13] R. Daw, S. Candan, A. J. Beck, A. J. Devlin, I. M. Brook, S. MacNeil, R. A. Dawson, R. D. Short, Biomaterials 1998, 19, 1717.
    [14] R. M. France, R. D. Short, E. Duval, F. R. Jones, Chem. Mater. 1998, 10, 1176.
    [15] H. Yasuda, Plasma Polymerization, Academic Press, San Diego 1985.
    [16] A. Grill, Cold Plasma in Materials Fabrication, IEEE press, New York 1993.
    [17] R. Förch, A. N. Chifen, A. Bousquet, H. L. Khor, M. Jungblut, L. Q. Chu, Z. Zhang, I. O. Mensah, E. K. Sinner, W. Knoll, Chem. Vap. Deposition 2007, 13, 280.
    [18] R. Forch, Z. Zhang, W. Knoll, Plasma Process. Polym. 2005, 2, 351.
    [19] K. J. Kitching, V. Pan, B. D. Ratner, Biomedical Applications of Plasma-Deposited Thin Films, in: Plasma Polymer Films, H. Bidermann, Ed., Imperial College Press London 2004, p. 325.
    [20] Taiwan I250994, invs.: A. C. M. Yang, Y. H. Chang, C. C. Chang.
    [21] Y. H. Chang, C. C. Chang, A. C.-M. Yang, in: Proc. Annu. Meeting Biomed. Eng. Soc., Los Angeles, California 2007, p. 57.
    [22] Y. H. Chang, C. C. Chang, Y. C. Chen, A. C.-M. Yang, Y. C. Liu, in: Proc. Am. Phys. Soc. March Meeting, Baltimore, Maryland 2006, p. 1067.
    [23] Y. H. Chang, C. C. Chang, Y. C. Chen, A. C.-M. Yang, Y. C. Liu, C. K. Cheng, Plasma Process. Polym. 2009, 6, 45.
    [24] C. G. Elles, F. F. Crim, Annu. Rev. Phys. Chem. 2006, 57, 273.
    [25] M. Sugawara, Plasma Etching: Fundamentals and Applications, Oxford University Press: New York, 1998.
    [26] L. O’Toole, A. J. Beck, R. D. Short, Macromolecules 1996, 29, 5172.
    [27] D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, London 1998, p. 44.
    [28] M. R. VanLandingham, J. Res. Natl. Inst. Stand. Technol. 2003, 108, 249.
    [29] D. K. Owens, R. C. Wendt, J. Appl. Polym. Sci. 1969, 13, 1741.
    [30] B. Feng, J. Weng, B. C. Yang, S. X. Qu, X. D. Zhang, Biomaterials 2003, 24, 4663.
    [31] U. W. Gedde, Polymer Physics, Chapman & Hall, London 1995, p. 48.
    [32] It can be shown that χ = β1 +V1 ( δ1 – δ2)2/RT where β1 is lattice constant, δ1 and δ2 are solubility parameters of the solvent and polymer respectively. For PLLA, δ2= 19 - 20.5 (J□cm3)1/2; for chloroform, δ1 = 19.42 (J□cm3)1/2. The parameter χ is then calculated to be in the range 0.314 - 0.364.
    [33] H. Biederman, Y. Osada, Plasma Polymerization Processes, Elsevier Science Publisher, New York 1992, p. 37.
    [34] G. Socrates, Infrared and Raman Characteristic Group Frequencies, John Wiley and Sons, New York 2001.
    [35] D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York 1991.
    [36] C. Emmeluth, M. A. Suhm, D. Luckhausa, J. Chem. Phys. 2003, 118, 2242.
    [37] E. Pretsch, J. Seibl, W. Simon, T. Clerc, Table of Spectral Data for Structure Determination of Organic Compounds, 2nd edition, Springer-Verlag, New York 1989.
    [38] D. L. Pavia, G. M. Lampman, S. K. Kirz, Introduction to Spectroscopy, 3rd ed, Thomson Learning, Orlando 2001.
    [39] D. B. Haddow, R. M. France, R. D. Short, J. W. Bradley, D. Barton, Langmuir 2000, 16, 5654.
    [40] Y. V. Pan, D. D. Denton, J. Appl. Polym. Sci. 1999, 73, 1.
    [41] J. J. Cooper-White, M. E. Mackay, J. Polym. Sci. Part B: Polym. Phys. 1999, 37, 1803.
    [42] J. H. Lin, A. C.-M. Yang, Macromolecules 2001, 34, 3698.
    [43] K. Webb, V. Hlady, P. A. Tresco, J. Biomed. Mater. Res. 1998, 41, 422.
    [44] M. Sugawara, Plasma Etching, Oxford University Press, New York 1998, p. 41.
    [45] I. A. Rusu, G. Popa, J. L. Sullivan, J. Phys. D: Appl. Phys. 2002, 35, 2808.
    [46] M. Aflori, L. M. Ivan, M. Mihai-Plugaru, D. G. Dimitriu, Rom. J. Phys. 2006, 51, 225.
    [47] R. T. Sanderson, Chemical Bonds and Bond Energy, Academic Press, New York 1976.
    [48] J. R. Hwu, C. Y. Hsu, M. L. Jain, Tetrahedron Lett. 2004, 45, 5151.
    [49] A. B. Wu, H. W. Cheng, C. M. Hu, F. A. Chen, T. C. Chou, C. Y. Chen, Tetrahedron Lett. 1997, 38, 621.
    [50] A. Hollander, J. Behnisch, M. R. Wertheimer, Vacuum UV Effects on polymers, in: Plasma Processing of Polymers, R. d’Agostino, P. Favia, F. Fracassi, Eds., Kluwer, Dordrecht 1997, p. 411.
    [51] J. M. Coxon, B. Halton, Organic Photochemistry, Cambridge University Press, London 1974.
    [52] E. Ikada, J. Photopolym. Sci. Technol. 1997, 10, 26.
    [53] C. E. Wayen, R. P.Wayen, Photochemistry, Oxford University Press, Oxford 1996, p. 23.
    [54] M. L. Steen, C. I. Butoi, E. R. Fisher, Langmuir 2001, 17, 8156.
    [55] R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra, John Wiley and Sons, New York 1950.
    [56] Y. M. Harshe, G. Storti, M. Morbidelli, S. Gelosa, D. Moscatelli, Macromol. React. Eng. 2007, 1, 611.
    [57] P. Delgado, M. T. Sanz, S. Beltran, Chem. Eng. J. 2007, 126, 111.

    Chapter 2
    [1] Intergovernmental Panel on Climate Change, IPCC: http://www.ipcc.ch
    [2] M. R. Allen, D. J. Frame, C. Huntingford, C. D. Jones, J. A. Lowe, M. Meinshausen, N. Meinshausen, Nature 2009, 458, 1163.
    [3] Oceanography in the 21st century – an online textbook, http://oceanworld.tamu.edu/resources/oceanography-book/evidenceforwarming.htm
    [4] C, Song, ACS Symposium Series; American Chemical Society: Washington, DC, 2002. In CO2 Conversion and Utilization.
    [5] E. J. Beckman, Science 1999, 283, 946.
    [6] C. Song, Catalysis Today 2006,115, 2.
    [7] T. Sakakura, J. C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365.
    [8] M. Aresta, A. Dibenedetto, Dalton Trans. 2007, 28, 2975.
    [9] P. Y. Bruice, Organic chemistry, Pearson Education, 2004.
    [10] K. M. K. Yu, C. M. Y. Yeung, S. C. Tsang, J. Am. Chem. Soc. 2007, 129, 6360.
    [11] J. Y. Wang, G. G. Xia, A. Huang, S. L. Suib, Y Hayashi, H. Matsumoto, J. Catalysis 1999, 185, 152.
    [12] M. Sahibzada,□I. S. Metcalfe, D. Chadwick, J. Catalysis 1998, 174, 111.
    [13] S. Lee, A. Sardesai, Topics in Catalysis 2005, 32, 197.
    [14] M. Aresta, A. Dibenedetto, Dalton Trans., 2007, 2975–2992.
    [15] K. M. K. Yu, C. M. Y. Yeung, S. C. Tsang, J. Am. Chem. Soc. 2007, 129, 6360.
    [16] J. Y. Wang, G. G. Xia, A. Huang, S. L. Suib, Y Hayashi, H. Matsumoto, J. Catalysis 1999, 185, 152.
    [17] M. Sahibzada, I. S. Metcalfe, D. Chadwick, J. Catalysis 1998, 174, 111.
    [18] S. Lee, A. Sardesai, Topics in Catalysis 2005, 32, 197.
    [19] A. Grill, Cold Plasma in Materials Fabrication, IEEE press, New York 1993.
    [20] S.N. Andreev, V.V. Zakharov, V.N. Ochkin, S.Yu. Savinov, Spectrochimica. Acta. A 2004, 60, 3361.
    [21] A. M. Ghorbanzadeha, H. Modarresi, J. Appl. Phys. 2007, 101, 123303.
    [22] H. Hokazono, M. Obara, K. Midorikawa, H. Tashiro, J. Appl. Phys. 1991, 69, 6850.
    [23] N. A. S. A. Istadi, Fuel 2006, 85, 577.
    [24] A. Fridman, L. A. Kennedy, Plasma Physics and Engineering, Taylor and Francis, New York, 2004.
    [25] P. Capezzuto, F. Cramarossa, R. d’Agostino, E. Molinari, J. Phys. Chem. 1976, 80, 882.
    [26] A. Fridman, Plasma Chemistry, Cambridge University Press, New York, 2008.
    [27] D. R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor and Francis, New York, 2003.
    [28] A. M. Ghorbanzadeha, H. Modarresi, J. Appl. Phys. 2007, 101, 123303.
    [29] S. L. Yao, M. Okumoto, A. Nakayama, E. Suzuki, Energy & Fuels 2001, 15, 1295.
    [30] A. M. Ghorbanzadeh, S. Norouzi, T. Mohammadi, J. Phys. D: Appl. Phys. 2005, 38, 3804.
    [31] Y. Li, G. H. Xu, C. J. Liu, B. Eliassonn, B. Z. Xue, Energy & Fuels 2001, 15, 299.
    [32] H. D. Gesser, N.R. Hunter, D. Probawono, Plasma Chem. Plasma Processing 1998, 18, 241.
    [33] L. M. Zhou, B. Xue, U. Kogelschatz, B. Eliasson, Energy Fuels 1998, 12, 1191.
    [34] H. Lesueur, A. Czernichowski, J. Chapelle, Int. J. Hydrogen Energy 1994, 19, 139.
    [35] R. Borghi et al., Combustion and Flames: Chemical and Physical Principles, Editions TECHNIP, 1998.
    [36] G. Hill, Chemistry in Context, Nelson Thornes, 2000.
    [37] H. L. Chen, H. M. Lee, S. W. Chen, M. B. Chang, S. J. Yu, S. N. Li, Environ. Sci. Technol. 2009, 43, 2216.
    [38] G. Lombardi, N. Blin-Simiand, F. Jorand, L. Magne, S. Pasquiers, C. Postel, J. R. Vacher, Plasma Chem. Plasma Process 2009, 27, 414.
    [39] R. Davis, M. Frearson, Mass Spectrometry, John Wiley and Sons, 1987.
    [40] S. A. Voronin, M. Zelzer, C. Fotea, M. R. Alexander, J. W. Bradley, J. Phys. Chem. B 2007, 111, 3419.
    [41] T. Kambara, J. Phys. Soc. Jpn. 1947, 2, 25.
    [42] D. L. Pavia, G. M. Lampman, S. K. Kirz, Introduction to Spectroscopy (3nd ed.), Thomson Learning, Orlando, 2001.
    [43] Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, , B. Eliasso, Fuel Processing Technology 2003, 83, 101.
    [44] N. Inagaki, Plasma Surface Modification and Plasma Polymerization, Technomic Publishing Company, Pennsylvania, 1996.
    [45] H. Yasuda, Plasma polymerization, Academic Press, New York, 1985.
    [46] H. Biederman, Y. Osada, Plasma Polymerization Processes, Elsevier Science Publisher, New York 1992.
    [47] R. T. Sanderson, Chemical Bonds and Bond Energy, Academic Press, New York 1976.
    [48] J. Brandrup, E. H. Immergut, Polymer Handbook 3rd, John Wiley and Sons, New York, 1989.
    [49] G. Socrates, Infrared and Raman Characteristic Group Frequencies, John Wiley and Sons, New York, 2001.
    [50] Y. P. Raizer, Gas Discharge Physics. Spring-Verlag, Berlin, 1991.
    [51] NIST kinetic database, http://kinetics.nist.gov/kinetics/KineticsSearchForm.jsp
    [52] L. G. Wade, Organic Chemistry, Pearson Education, Inc., 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE