簡易檢索 / 詳目顯示

研究生: 林彥宏
Yen-Hong Lin
論文名稱: 應用於SONET OC-48之2.5Gb/s半速時脈與資料回復電路
A 2.5Gb/s Half-Rate Clock and Data Recovery Circuit for SONET OC-48 Application
指導教授: 徐永珍
Klaus Yung-Jane Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 資料與時脈回復電路相位偵測器頻率偵測器壓控震盪器充電泵迴路濾波器
外文關鍵詞: clock and data recovery, phase detector, frequency detector, voltage-controlled oscillator, charge pump, loop filter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時脈與資料回復電路(CDR)已經被廣泛應用在許多消費性電子產品之中。應用於串列傳輸的接收介面的話,在較低的頻率應用下,通常是採用數位電路來完成,常見的像是數位式鎖相迴路 (DPLL)。然而在一些較高速的應用上,例如光纖通訊系統,由於其傳輸的資料時脈頻率較高,所以通常都是用類比式電路來完成。對於單一通道動輒要達到數Gb/s範圍的收發器大部分是利用較昂貴的砷化鎵(GaAs),矽鍺(SiGe),雙載子電晶體(BJT)或BiCMOS製程來實現,其可操作頻率較高,對於雜訊抵抗能力較強,有比較好的性能,但是其缺點就是製程比較昂貴、整合不易且通常需耗掉較多的電流。近年來,CMOS的製程技術不斷的進步,因此CMOS CDR在學術期刊上廣為應用與發表,由於CDR電路常需要與其他電路做整合的動作,所以CMOS低耗電、低價格、易整合的優點應該是相當的適合需求,我們可以利用電路的技術來克服元件本身的缺點,進而達到SOC的目標。

    本論文實作一個應用於光通訊SONET OC-48規格之CDR,希望以較便宜且高整合性之TSMC 0.35μm CMOS 2P4M製程來達到2.5Gb/s高速、高資料量的目標。吾人設計之CDR電路為半速架構,其中包含半速相位偵測器、半速頻率偵測器、充電泵、迴路濾波器以及壓控震盪器,震盪器之頻率操作在半速1.25GHz,降低了振盪器的設計難度。模擬結果,在不包含輸入輸出緩衝器操作在3.3V電壓下,功率消耗為107.7mW。量測結果發現,CDR電路可以鎖定在輸入為2.5Gb/s之週期性資料,晶片大小為1160 x 980μm2。


    Clock and data recovery circuits (CDR) have already been applied in a lot of consumption electronic products. The ones that applied to serial data communications, under the circumstances that lower data rate, CDR circuits are usually realized by digital circuits, such as digital type phase-locked loop (DPLL). On some high-speed applications, such as optical fiber communication systems, because the data rate is relatively high, so CDR circuits are usually implemented by analog circuits. For transceivers which reach Gb/s are usually realized by GaAs, SiGe, BJT and BiCMOS, because their operate frequency can be relatively high, and have better immunity for noise. But they usually spend large power consumption, beside are expensive and not suitable for integration. In recent years, the CMOS technologies progress constantly, so CMOS CDR is used and issued far and wide at the academic periodical. Because CDR circuits are often needed for integrated with other circuits, so CMOS which is low power consumptive, low cost and high integrating is very suitable for reaching the goal of SOC.

    A 2.5Gb/s half-rate CDR circuit for SONET OC-48 application is presented in this thesis, including half-rate phase detector, half-rate frequency detector, charge pump, loop filter and voltage-controlled oscillator. Under the half-rate architecture, the frequency of voltage-controlled oscillator must operate in 1.25GHz, therefore we reduce the design difficulty of voltage-controlled oscillator. We hope that the CDR circuit can be realized by TSMC 0.35μm 2P4M CMOS process which is cheap and high integration to reach high-speed and high-capability applications. Simulation results show that this CDR circuit operating under 3.3V, the power consumption is 107.7mW (without I/O buffers).Measurement results show that the CDR circuit can lock under periodic 2.5Gb/s data, and the chip size is 1160 x 980μm2.

    目錄 第一章 序論 1 1.1 研究動機 1 1.2 應用系統規格簡介 1 1.3 隨機資料 3 1.4 光收發器 3 1.5 時脈與資料回復電路的操作 4 第二章 抖動來源與規範 6 2.1 抖動的定義 6 2.2 抖動的來源 7 2.2.1 隨機抖動 7 2.2.2 定量性抖動 8 2.2.3 總抖動 8 2.3 眼圖 9 2.4 抖動規範 10 2.4.1 抖動轉移 10 2.4.2 抖動產生 10 2.4.3 抖動容忍 11 第三章 時脈與資料回復電路之基本理論 12 3.1 常見的幾種CDR架構 12 3.2 幾種相位偵測器 16 3.3 迴路分析 20 3.4 迴路參數設計 23 3.4.1 抖動轉移與跳動之分析 23 3.4.2 抖動產生之分析 24 3.4.3 抖動容忍之分析 25 第四章 時脈與資料回復電路之設計 28 4.1 電路架構 28 4.2 電流模式邏輯(CML) 29 4.3 相位偵測器 32 4.4 充電泵 35 4.5 頻率偵測器 36 4.6 環型壓控震盪器 41 4.6.1 Negative skewed delay架構 42 4.6.2 工作週期校正(Duty Cycle Corrector,DCC)電路 44 4.6.3 輸出緩衝器 45 4.7 低通迴路濾波器 45 4.8 模擬結果 46 4.8.1 Simulink模擬結果 46 4.8.2 Hspice模擬結果 48 4.9 電路佈局與腳位 54 第五章 量測結果與後續建議 56 5.1 量測裝置 56 5.2 PCB設計 56 5.3 量測結果 58 5.4 後續建議事項 62 5.5 結論 63 參考文獻 64 圖目錄 圖1.1 光收發器架構圖 3 圖1.2 CDR產生乾淨且低抖動之時脈與資料 4 圖1.3 取樣點落在劇雜訊與抖動資料的中間 5 圖2.1 時域上抖動示意圖 6 圖2.2 RJ示意圖 8 圖2.3 總抖動之組成因子 9 圖2.4 眼圖的形成 9 圖2.5 眼圖 9 圖2.6 抖動轉移 10 圖2.7 抖動容忍 11 圖2.8 抖動容忍與抖動轉移之量測裝置 11 圖3.1 全速CDR之操作時序 12 圖3.2 使用DFF對Din重新取樣,產生新的資料Dout 13 圖3.3 半速CDR之操作時序 13 圖3.4 資料經半速時脈取樣後,由2:1MUX合成原先的資料量 13 圖3.5 四分之ㄧ速CDR之操作時序 14 圖3.6 資料經四分之ㄧ速時脈取樣後,由三個2:1MUX合成原先的資料量 15 圖3.7 (a)Hogge相位偵測器與充電泵,(b)時脈領先,(c)時脈落後,(d)時脈鎖定 16 圖3.8 (a)線性(b)理想Bang-Bang(c)真實Bang-Bang之相位偵測器特性曲線 17 圖3.9 Alexander相位偵測器 18 圖3.10 Alexander像未偵測器操作時序(a)時脈落後(b)時脈領先 18 圖3.11 三倍超取樣相位偵測器架構之CDR 19 圖3.12 時脈與資料之相位關係(a)時脈領先(b)時脈落後(c)時脈與資料同相位 19 圖3.13 PLL之線性模型 20 圖3.14 開迴路增益之頻率響應 21 圖3.15 抖動轉移函數 23 圖3.16 CDR之抖動容忍 26 圖3.17 抖動容忍(a)不同的 (b)不同的 27 圖4.1 半速架構CDR之電路方塊圖 28 圖4.2 CML中的D型閂鎖器(D-latch) 30 圖4.3 CML負載的種類(a)被動式的電阻負載,(b)偏壓在線性區之主動式PMOS負載,(c)二極體連接式PMOS主動負載 30 圖4.4 半速線性相位偵測器 32 圖4.5 CML電路:(a)互斥或閘(XOR),(b)二對一多工器(MUX) 33 圖4.6 線性相位偵測器的操作時序 33 圖4.7 相位差示意圖 33 圖4.8 UP/DOWN訊號:UP大約是DOWN的兩倍寬 34 圖4.9 MUX的輸出結果,由上往下依序為Din、X1、X2、Y1、Y2、Dout 34 圖4.10 輸出緩衝器 35 圖4.11 相位偵測器的充電泵 35 圖4.12 半速頻率偵測器(DQFD) 36 圖4.13 CML電路:D-flip flop,由兩個D-latch串接而成 37 圖4.14 CML電路:AND/NAND閘 37 圖4.15 (a)狀態圖,(b)組合邏輯閘 37 圖4.16 DQFD偵測頻率差之操作時序 39 圖4.17 (a)由狀態I跳到IV之時序 (b)由狀態IV跳到I之時序 40 圖4.18 (a)CMOS反向器使用negative skewed delay架構,(b)操作時序 42 圖4.19 壓控震盪器的延遲單元電路架構 43 圖4.20 產生negative skewed delay 44 圖4.21 (a)DCC電路,(b)DCC操作時序 44 圖4.22 源汲隨耦器 45 圖4.23 低通迴路濾波器 45 圖4.24 Simulink模擬CDR行為之線性PLL模型 46 圖4.25 CDR 頻率響應 47 圖4.26 (a)控制電壓Vc,(b)控制電壓Vf 47 圖4.27 VCO的頻率最後被鎖定在1.25GHz 47 圖4.28 CDR鎖定後,輸入資料、回復時脈與回復資料的波形 48 圖4.29 相位偵測器與充電泵曲線圖 48 圖4.30 頻率偵測器與充電泵曲線圖 49 圖4.31 VCO控制電壓與頻率關係曲線 50 圖4.32 VCO震盪在1.25GHz時之相位雜訊 50 圖4.33 CDR在TT_25°下約6.5μs達到鎖定 51 圖4.34 CDR在FF_0°下約6μs達到鎖定 51 圖4.35 CDR在SS_80°下約10μs達到鎖定 51 圖4.36 MUX輸出之眼圖,由上而下依序為:Dout+,Dout- 52 圖4.37 經過輸出緩衝器之眼圖,由上而下依序為:Dout+,Dout- 52 圖4.38 PD之波形,由上到下依序為:Din,Dout+,Dout-,Dout&Dout- 53 圖4.39 VCO之post-simulation 53 圖4.40 (a)電路佈局,(b)Floor plan 54 圖5.1 量測裝置 56 圖5.2 高頻路徑之PCB(a)Protel DXP設計,(b)實際PCB 57 圖5.3 DC路徑之PCB(a)Protel DXP設計,(b)實際PCB 57 圖5.4 LM317穩壓器 58 圖5.5 LC濾波器 58 圖5.6 VCO的特性曲線 58 圖5.7 (a)振盪在最高頻率1.087 GHz之頻譜,(b)相位雜訊 59 圖5.8 (a)振盪在最低頻率897MHz之頻譜,(b)相位雜訊 59 圖5.9 2.5Gb/s回復資料之眼圖 60 圖5.10 1.25GHz之回復時脈(a)抖動量測,(b)時域上之波形 60 圖5.11 1.25GHz回復時脈(a)鎖定頻譜,(b)相位雜訊 60 圖5.12 晶片裸照圖 61 表目錄 表1.1 SONET/SDH規格之關係 2 表4.1 CML負載的比較 31 表4.2 DQFD之真值表 38 表4.3 相鄰兩資料之上升邊緣所包含的資料位元數 39 表4.4 對於各種狀態轉換, 、 與 之間的關係 41 表4.5 模擬結果整理 54 表4.6 Pin腳說明 55 表5.1 量測結果與文獻比較表 61

    參考文獻
    [1] Y. M. Greshishchev and P. Schvan, “SiGe clock and data recovery IC with linear type PLL for 10-Gb/s SONET application,” in Proc. 1999 Bipolar/BiCMOS Circuits and Technology Meeting, Sept. 1999, pp.169-172.
    [2] M. Wurzer et al., “40-Gb/s integrated clock and data recovery circuit in a silicon bipolar technology,” in Proc. 1998 Bipolar/BiCMOS Circuits and Technology Meeting, Sept. 1998, pp.136-139.
    [3] H Ransijn and P. O’ Connor, “A PLL-Based 2.5Gb/s GaAs clock and data regenerator IC,” IEEE J. Solid-State Circuits, vol. 26, no.10, Oct. 1991.
    [4] 楊素華, 陳憶婷, 簡昕慧, 張詩意, 楊筑閔, ” 光纖通訊技術發展現況,” 科學發展月刊, 第29卷, 第12期, pp. 879-883, 中華民國九十年十月.
    [5] Jae Shin Lee; Woo Kiang Jin; Dong Myung Choi; Bang-Wen Lee; Suki Kim, “A wide range PLL for 64X speed CD-ROM & 10X speed DVD-ROM,” Consumer Electronics, 2000. ICCE. 2000 Digest of Technical Papers. International Conference on, 2000 Page(s):98-99
    [6] Http://www.agilent.com, Jitter Analysis Techniques for High Data Rate, Application Note 1432.
    [7] Rich Walker, “Clock and Data Recovery for Serial Digital Communication focusing on bang-bang loop CDR design methodology,” ISSCC Short Course, February 2002.
    [8] Jri Lee, Behzad Razavi, “A 40-Gb/s Clock and Data Recovery Circuit in 0.18-μm CMOS Technology, “ IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2181-2190, December 2003.
    [9] Seong-Jun Song, Sung Min Park, Hoi-Jun Yoo, “A 4-Gb/s CMOS Clock and Data Recovery Circuit Using 1/8-Rate Clock Technique,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1213-1219, July 2003.
    [10] http://www.ee.cgu.edu.tw/member/teacher/rjyang/rjyang_index.htm
    [11] Behzad Razavi, “Design of Integrated Circuits for Optical Communications,” McGRAW-HILL, International Edition 2003.
    [12] Y. Moon, D.-K. Jeong, and G. Ahn, “A 0.6-2.5 Gbaud CMOS tracked 3x oversampling transceiver with dead-zone phase detection for robust clock/data recovery,” IEEE J. Solid-State Circuits, vol. 36, NO.12, pp. 1974-1983, Dec. 2001.

    [13] F. Herzel and B. Razavi, “A Study of Ocillator Jitter Due to Supply and Substrate Noise,” IEEE Trans. Circuits and Systems, Part II, vol. 46, pp. 56-62, Jan. 1999.
    [14] J. A. McNeil, “Jitter in Ring Oscillators,” IEEE Journal of Solid-State Circuits, vol. 32, pp- 870-879, June 1997.
    [15] Lu Jianhua; Tian Lei; Chen Haitao; Xie Tingting; Chen Zhiheng; Wang Zhigong, “Design Techniques of CMOS SCL circuits for Gb/s Applications,” ASIC, 2001. Proceedings. 4th International Conference on 23-25 Oct. 2001 Page(s):559-562.
    [16] 張耿孟, “應用於W-CDMA之整數型頻率合成器,” 國立清華大學, 電子工程研究所, 碩士論文, 中華民國九十三年六月.
    [17] Jafar Savoj, Behzad Razavi, “A 10-Gb/s CMOS Clock and Data Recovery Circuit with a Half-Rate Linear Phase Detector,” IEEE Journal of Solid-State Circuits, vol. 36, no. 5, pp. 761-767, May 2001.
    [18] Jafar Savoj, Behzad Razavi, “A 10-Gb/s CMOS Clock and Data Recovery Circuit with a Half-Rate Binary Phase/Frequency Detector,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 13-21, January 2003.
    [19] Joonsuk Lee, Beomsup Kim, “A Low-Noise Fast-Lock Phase-Locked Loop with Adaptive Bandwidth Control,” IEEE Journal of Solid-State Circuits, vol. 35, no. 8, pp. 1137-1145, August 2000.
    [20] Rong-Jyi Yang, Shang-Ping Chen, Shen-Iuan Liu, “A 3.125-Gb/s Clock and Data Recovery Circuit for the 10-Gbase-LX4 Ethernet,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp.1356-1360, August 2004.
    [21] Seon-Jun Lee, Beomsup Kim, Kwyro Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, no. 2, pp. 289-291, February 1997.
    [22] Chan-Hong Park, Beomsup Kim, “A Low-Noise, 900-MHz VCO in 0.6-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 586-591, May 1999.
    [23] Kiyoshi Ishii, Keiji Kishine, Haruhiko Ichino, “A Jitter Suppression Technique for a 2.48832-Gb/s Clock and Data Recovery Circuit,” IEEE Transactions on Circuits and Systems II, vol. 49, no. 4, pp. 266-272, April 2002.
    [24] J. Christoph Scheytt, Gerhard Hanke, Ulrich Langmann, “A 0.155-, 0.622-, and 2.488-Gb/s Automatic Bit-Rate Selecting Clock and Data Recovery IC for Bit-Rate Transparent SDH Systems,” IEEE Journal of Solid-State Circuits, vol. 34, no. 12, pp. 1935-1943, December 1999.

    [25] Rong-Jyi Yang, Shen Iuan Liu, “A Fully Integrated 1.7-3.125Gbps Clock and Data Recovery Circuit Using a Gated Frequency Detector,” IEICE Trans. Electron, vol. E88-C, no. 8, pp. 1726-1730, August 2005.
    [26] Http://www.agilent.com, Calibrated Jitter, Jitter Tolerance Test and Jitter Laboratory with the Agilent J-BERT N4903A, Application Note.
    [27] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGRAW-Hill international edition, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE