簡易檢索 / 詳目顯示

研究生: 潘科維
Pan, Ko-Wei
論文名稱: 基於結構化森林與L0平滑的 影像去模糊
Image Deblurring via Structured Forest and L0 Gradient Minimization
指導教授: 張隆紋
Chang, Long-Wen
口試委員: 陳朝欽
Chen, Chaur-Chin
陳煥宗
Chen, Hwann-Tzong
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 67
中文關鍵詞: 影像去模糊結構化森林物件估測L0梯度最小化
外文關鍵詞: Image Deblurring, Structure Forest, Object Proposal, L0 Gradient Minization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用單一模糊影像去模糊已被長時間討論,現今多數去模糊演算法都是使用整張影像的資訊來估算模糊核(kernel),並利用最大後驗機率估計(Maximum the a posteriori, MAP)方式,將模糊影像由粗略到精細,經多次迭代,交替估測模糊核與隱式影像(latent image)直到收斂。
    然而,利用整張影像來估算模糊核並不是永遠都能得到好的結果,影像中許多區域並不能提供正確的模糊資訊,有時反而會使估計結果有錯誤並耗費更多時間計算。因此,我們提出了一個基於邊緣資訊的區塊選擇方法,來選取對於估測模糊核有幫助的區塊,減少處理資訊量。
    我們一開始將模糊影像和其對應清晰影像的邊緣進行分析,引用並改良 [1],訓練出一個結構化森林(structured forest),接著只要將模糊影像輸入訓練好的模組,就可以很快的找出多個含有豐富邊緣資訊的區塊,再利用空間資訊,選擇是否要合併,最後產生一個或多個對於估測模糊核較有幫助的區塊,再利用最大後驗機率估計模糊核。
    在交替估測的時候,我們發現隱式影像中如果含有過多細節,亦可能會影響模糊核估測的正確性,所以在每次迭代前,先對影像取L0 平滑(L0 Gradient Minimization),去掉多餘的細節並保留主要結構,再從結構中提取邊緣資訊進行模糊核估測。


    Recovering an un-blurred image from a single, motion-blurred photograph has long been a fundamental research problem in digital imaging. Recently, most deblurring algorithm use whole image as input to estimate the blur kernel based on a coarse-to-fine MAP approach.
    However, not all pixels of the input blurred image are informative. Many regions in the images, smooth regions for example, do not contribute much for estimating the blur kernel, even take more time to compute. Thus, we present the regions selection method based on strong edges to automatically select the good regions for estimating the blur kernel.
    At the beginning, we analyze the blurred images and the edges correspond with its clear images, retraining the structured forest based on [1]. The trained module takes the blurred image as input and find the candidate regions which contain strong edges. Then we use the spatial information to decide whether to merge these regions or not. After that, we can get the patch which can contribute much for estimating the blur kernel.
    At the estimation time, we find that too much detail in the latent image may affect the correctness of the kernel. Consequently, we apply L0 Gradient Minimization on the latent image before each iteration to remove extra details and preserve main structure simultaneously. Then extract the edges from the structure to improve the quality of kernel estimation.

    Chapter 1. Introduction 1 Chapter 2. Related Work 3 Chapter 3. The Proposed Method 5 3.1 Patch Selection 7 3.1.1 Edge Detection Using Structured Forest 7 3.1.2 Object Proposal 12 3.2 Image Deblur with Salient Structure 22 3.2.1 Extracting Reliable Structure 22 3.2.2 Kernel Estimation 27 3.2.3 Latent Image Estimation 28 Chapter 4. Experiment Results 30 Chapter 5. Conclusions 51 References 52 Appendix A 56 Appendix B 60

    [1] P. Dollár and L. C. Zitnick, "Fast Edge Detection Using Structured Forests," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 8, pp. 1558-1570, 1 Aug 2015.
    [2] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis and W. T. Freeman, "Removing camera shake from a single photograph," Proceedings of ACM SIGGRAPH, vol. 25, no. 3, pp. 787-794, July 2006.
    [3] A. Levin, Y. Weiss, F. Durand and W. T. Freeman, "Understanding and evaluating blind deconvolution algorithms," Proceedings of IEEE conference on computer vision and pattern recognition, pp. 1964-1971, June 2009.
    [4] N. Joshi, R. Szeliski and D. J. Kriegman, "PSF estimation using sharp edge prediction," Proceedings of IEEE conference on computer vision and pattern recognition, June 2008.
    [5] T. S. Cho, S. Paris, B. K. P. Horn and W. T. Freeman, "Blur kernel estimation using the radon transform," Proceedings of IEEE conference on computer vision and pattern recognition, pp. 241-248, June 2011.
    [6] S. Cho and S. Lee, "Fast motion deblurring," Proceedings of ACM SIGGRAPH Asia, vol. 28, no. 5, pp. 145:1-145:8, December 2009.
    [7] L. Xu and J. Jia, "Two-phase kernel estimation for robust motion deblurring," Proceedings of European conference on computer vision, vol. 6311, pp. 157-170, September 2010.
    [8] J. Pan, R. Liu, Z. Su and X. Gu, "Kernel estimation from salient structure for robust motion deblurring," Signal Processing: Image Communication, vol. 28, no. 9, pp. 1156-1170, October 2013.
    [9] S. Harmeling, S. Sra, M. Hirsch and B. Schölkopf, "Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM," Proceedings of IEEE International Conference on Image Processing, pp. 3313-3316, September 2010.
    [10] O. Whyte, J. Sivic and A. Zissermsn, "Deblurring Shaken and Partially Saturated Images," International Journal of Computer Vision, vol. 110, no. 2, pp. 185-201, November 2014.
    [11] Z. Hu, S. Cho, J. Wang and M.-H. Yang, "Deblurring Low-light Images with Light Streaks," Proceedings of IEEE conference on computer vision and pattern recognition, pp. 3382-3389, June 2014.
    [12] H. Bae, B. C. Fowlkes and P. H. Chou, "Patch Mosaic for Fast Motion Deblurring," Asian Conference on Computer Vision, pp. 322-335, November 2012.
    [13] Z. Hu and M.-H. Yang, "Good Regions to Deblur," European Conference on Computer Vision, pp. 59-72, October 2012.
    [14] L. Xu, S. Zheng and J. Jia, "Unnatural L0 Sparse Representation for Natural Image Deblurring," Proceedings of IEEE conference on computer vision and pattern recognition, pp. 1107-1114, June 2013.
    [15] W.-Z. Shao, H.-B. Li and M. Elad, "Bi-l0-l2-norm regularization for blind motion deblurring," Journal of Visual Communication and Image Representation, vol. 33, pp. 42-59, November 2015.
    [16] L. C. Zitnick and P. Dollár, "Edge Boxes: Locating Object Proposals from Edges," European Conference on Computer Vision, pp. 391-450, September 2014.
    [17] P. Kontschieder, S. R. Bulò, H. Bischof and M. Pelillo, "Structured class-labels in random forests for semantic image labelling," Proceedings of IEEE International Conference on Computer Vision, pp. 2190-2197, November 2011.
    [18] T. I. Joliffe, Principal Component Analysis, Springer-Verlag, 1986.
    [19] L. I. Rudin, S. Osher and E. Fatermi, "Nonlinear total variation based noise removal algorithms," Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259-268, November 1992.
    [20] W.-S. Lai, J.-J. Ding, Y.-Y. Lin and Y.-Y. Chuang, "Blur kernel estimation using normalized color-line priors," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 64-72, June 2015.
    [21] L. Xu, C. Lu, Y. Xu and J. Jia, "Image Smoothing via L0 Gradient minimization," Proceedings of ACM SIGGRAPH Asia, vol. 30, no. 6, pp. 174:1-174:11, December 2011.
    [22] A. Levin, R. Fergus, F. Durand and W. T. Freeman, "Image and depth from a conventional camera with a coded aperture," Proceedings of ACM SIGGRAPH, vol. 26, no. 3, pp. 70-1-70-9, July 2007.
    [23] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja and M.-H. Yang, "A Comparative Study for Single Image Blind Deblurring," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701-1709, June 2016.
    [24] L. Sun, S. Cho, J. Wang and J. Hays, "Edge-based Blur Kernel Estimation Using Patch Priors," Proceedings of IEEE Conference on Computational Photography, pp. 1-8, April 2013.
    [25] T. I. Joliffe, Principal Component Analysis, Springer-Verlag, 1986.

    QR CODE