研究生: |
蕭鈺勳 Hsiao, Yu-Hsun |
---|---|
論文名稱: |
中子照相應用於小管徑矩形管之雙相流可視化研究 Application of neutron radiography to visualization of two phase flows in narrow rectangular ducts |
指導教授: |
陳紹文
Chen, Shao-Wen |
口試委員: |
裴晉哲
簡國祥 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 中子照相 、雙相流 |
外文關鍵詞: | two-phase flow, neutron radiography |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為使用中子照相方法進行雙相流測量。中子照相被用來作為垂直流與水平流的流譜觀測與空泡分率之觀察工具,小管徑矩形管厚度分別為1mm和5mm,寬皆為60 mm。流譜操作在氣泡流與彈狀流之流動狀態,在快門時間皆為0.2秒時進行在金屬通道之氣-水雙相流的可視化拍攝。光學拍照做為與中子照相方法之比較,使用中子照相方法觀察與測量之結果顯示,這些圖像的品質並不好需要靠影像處理改善,故建立處理雜訊與空泡分率計算之流程。
由於雙相流設備與測量中子之閃爍器兩者距離33cm,影像受到中子散射導致失真。使用Σ-scaling method計算雙相流之空泡分率,5mm矩管雙相流空泡計算結果得知,快門時間太長導致空泡分率計算結果高於理論值。1mm矩形管易受表面張力影響導致漂移速度幾乎為0且氣泡速度比5mm矩形管慢,實驗結果可知,隨著氣流量增加,空泡分率也隨之上升。為了了解Σ-scaling method之結果與實際值之誤差,使用1~4mm厚度不同之金屬分別放入5mm金屬矩形管。結果顯示4 mm水層厚度之測量誤差最小,5 mm受到中子通量不均勻而導致測量誤差上升。
The purpose of this study is to investigate measurement of two-phase flow by using a neutron radiography. This system is utilized to determine the flow regime and void fraction in narrow rectangular vertical and horizontal channels, gap widths 1mm and 5 mm with widths of 60 mm. The channel is operated as a bubbly and slug flow state. Visualization of air-water two-phase flow in a metal channel was performed at exposure time 0.2 second for neutron radiography. The optical system is used to compare with neutron radiography method. Results confirm the qualities of these images are not good to observe and measure two-phase flow in neutron radiography. A process was established in this study in order to reduce the noise and calculate void fraction.
Separation distance between the test section and the scintillator is 33 cm, this results in image distortion due to neutron scattering. Σ-scaling method was used for void fraction of two-phase flow. Exposure time is so long that the void fraction calculation for gap widths 5 mm is larger than predicted value. For gap widths 1mm of two-phase flow, the result of void fraction is smaller than predicted value. Due to surface tension, the drift velocity is almost 0 and bubble velocity is not faster than gap widths 5 mm. Results confirm the void fraction tends to increase as the gas velocity increases. In order to understand the difference between the result by Σ-scaling method and true vlaue, metallic thickness from 1 to 4 mm are put into 5 mm metallic duct, respectively. It is found that the measured error for water layer thickness of 4mm is minimum. The measured error for full water is greater because neutron flux is not well-distributed.
[1] 維基百科中子照相條目
http://en.wikipedia.org/wiki/Neutron_imaging
[2] K. Mishimaa, T. Hibikia, Y. Saitoa, H. Nakamurab, M. Matsubayashib, “The Review of the Application of Neutron Radiography to Thermal Hydraulic Research”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol 424, November , pp. 66–72 , 1999
[3] Y. Pfister, G., Schatz, A. K., Siegel, C., Steichele, E.,Waschkowski, W., Bu cherl, T., “Nondestructive Testing of Materials and Components by Computerized Tomography, with Fast and Thermal Reactor Neutrons”. Nucl. Sci.Eng. 110, pp.303–315, 1992
[4] T. Hibiki, K. Mishima,” Feasibility of high frame-rate neutron radiography by using a steady thermal neutron beam with 10 6 n/(cm 2 s) flux”, Nuclear Instruments & Methods in Physics Researsh. pp.186-194, 1996
[5] T.Hibiki, K.Mishima, K.Yoneda, S. Fujine, A. Tsuruno, M. Matsubayashi, “Visualization of Fluid Phenomena Using High Frame-Rate Neutron Radiography with a Steady Thermal Neutron Beam”, Nucl. Instrum. Methods A351, pp.423–436, 1994
[6] K.Mishima,T.Hibikia,”Quantitative Limits of Thermal and Fluid Phenomena Measurements Using the Neutron Attenuation Characteristics of Materials”Experimental Thermal and Fluid Science , pp. 516-523, 1996
[7] R.H . Bossi, A.H . Robinson and J.P. Barton,” High Speed. Motion Neutron Radiography”,Nucl . Tech .Vol. 59 pp.363, 1982
[8] John M. Cimbala, Jack S. Brenizer, Jr., Abel Po-Ya Chuang, Shane Hanna, C. ThomasConroy, A.A. El-Ganayni, David R. Riley, “Study of a Loop Heat Pipe Using Neutron
Radiography”, Applied Radiation and Isotopes, pp.701–705, 2004
[9] O.F. Selamet, U. Pasaogullari, D. Spernjak, D.S. Hussey, D.L. Jacobson, and M.D. Mat,“Two Phase Flow in a Proton Exchange Membrane Electrolyzer Visualized in Situ bySimultaneous Neutron Radiography”, International Journal of Hydrogen Energy, Vol.38, pp 5823-5835, 2013
[10]G.D. Harvel, K. Horib, K. Kawanishib, J.S. Changa, “Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-raycomputed tomography and real-time neutron radiography techniques”, Flow Measurement and Instrumentation, Vol. 10, pp. 259–266 , 1999
[11]T. Wilmarth, M. Ishii, “Two-phase flow regimes in narrow rectangular vertical and horizontal channels”, International Journal of Heat and Mass Transfer, Vol. 37, pp. 1749–1758 , 1993
[12]Lixin Cheng, Gherhardt Ribatski ,and John R. Thome, “Two-phase flow patterns and flow- pattern maps: fundamentals and applications”, Applied Mechanics Reviews, Vol 61, 2008
[13]Abolore Abdulah ,and Barry J. Azzopardi,”Two-phase upward flow in a slightly deviated pipe”, Journal of Fluids Engineering,Vol. 136 , 2014
[14]D. Barnea, Y. Luninski and Y. Taitel, “Flow pattern in horizontal and vertical two phase flow in small diameter pipes”, The Canadian Journal of Chemical Engineering, Vol 61 pp. 617–620, 1983
[15]Hewitt, G. F. and Hall-Taylor, N. S, “Annular two-phase flow”, Pergamon Press , 1970
[16]E. E. Zukosli, “Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes” , Journal of Fluid Mechanics, vol. 25, p.821-837, 1966
[17]Wilmarth, T., Ishii, M., “Interfacial area concentration and void fraction of two-phase flow in narrow rectangular vertical channels”, J. Fluids Eng. 19, 916–922, 1997
[18]K.Mishima,T.Hibikia,, T., “Some characteristics of air–water two-phase flow in small diameter tubes”, Int. J. Multiph. Flow ,VoL 22, 703–712, 1996
[19]Alves, G. E., “Co-current Liquid-gas Flow in A Pipeline Contractor”, Chem. Process.Engng, Vol. 50, No.4, pp. 449-456 , 1954
[20]Y. Taitel , D. Barnea, and Dukler A. E.,“Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes”, AIChE J. ,Vol. 26, pp. 345–354 , 1980
[21]D. Barnea, O. Shoham, Y. Taitel, “Gas-liquid flow in inclined tubes: Flow pattern transitions for upward flow”, Chemical Engineering Science, Vol. 40, pp 131–136 , 1983
[22]李承峰,「沸騰雙相流譜與微型甲醇重組產氫裝置效能」,國立清華大學核子工程與科學研究所,碩士論文,中華民國一百零三年
[23]裴晉哲,”清華大學水池式反應器中子照相的發展”,中國工程師-THOR 中子照相設備,中華民國九十七年
[24]McAndrew ,Wang & Tseng, 劉震昌/審譯, Introduction to Digital Image Processing with MATLAB Asia Edition 數位影像處理, 高立圖書,中華民國九十九年
[25]Otsu, N.,“A Threshold Selection Method from Gray-Level Histograms”, IEEE Transactions on Systems, Vol. 9, pp. 62-66 , 1979
[26]William K. Pratt, “Digital Image Processing”, John Wiley and Sons, second edition , 1991
[27]鍾堅, 輻射度量學概論, 五南圖書出版公司,中華民國九十五年
[28]Mishima, K., Hibiki, T., ”Visualization and measurement of two-phase flow by using neutron radiography”, Nuclear Engineering and Design, Vol 175, pp.25–35 ,1997
[29]N. Zuber, J. Findlay, “Average Volumetric Concentration in Two-Phase Systems”, Trans ASME Jul Ht Transfer, Vol 87, pp. 453 , 1969
[30]M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, ANL-77-47, 1977
[31]潘欽,沸騰熱傳與雙相流,國立編譯館,民國九十年
[32]G.B. , Wallis , “One Dimensional Two-phase Flow”, McGraw-Hill, 1969
[33]J.R. Lamarsh, A.J. Baratta, “Introduction to Nuclear Engineering, 3rd edition”, Prentice Hall , 2001