研究生: |
林怡君 Yi-Chun Lin |
---|---|
論文名稱: |
台灣小兒電腦斷層掃描劑量評估 Dose Evaluation for Pediatric CT in Taiwan |
指導教授: |
董傳中
Chuan-Jong Tung 蔡惠予 Hui-Yu Tsai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 電腦斷層 、劑量 、小兒電腦斷層掃描 、電腦斷層劑量指標 |
外文關鍵詞: | CT, Dose, Pediatric CT, CTDI |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據聯合國原子輻射效應科學委員會2000年公布的數據,醫用輻射劑量約佔全部人造輻射劑量的98%以上,其中以電腦斷層檢查的貢獻最大。由於電腦斷層影像對軟組織具有高解析度與高對比度的解剖影像,因此在醫學診斷上的應用非常普遍,然而電腦斷層給予受檢者的輻射劑量是一般X光照影的十數倍甚至百倍,因此,電腦斷層檢查病患的劑量與風險評估十分重要。近年來,國際上有許多研究報告探討電腦斷層的輻射劑量,特別是小兒電腦斷層檢查的劑量評估方面,資料顯示在相同有效劑量的條件下,嬰兒的致癌風險亦比成年人高出許多。而我國在此部份的數據,卻極為缺乏。為提升醫療品質、與重視輻射防護,研究台灣小兒電腦斷層的輻射劑量,有其重要性和必要性。
本研究首先建立量測上的分齡小兒圓柱形PMMA假體,使用衛生署公布的國人身高、體重資料,製作直徑分別為10、16、20、24及32 cm之假體,代表年齡層為新生兒、1至5歲、5至10歲、10至15歲及成年人,另製直徑為5 cm假體,以探求與空氣中量測之關係。採用長棒狀電腦斷層專用游離腔,度量五台電腦斷層掃描機的各種電腦斷層指標(CTDI),掃描機射束品質,與探討單次掃描劑量分布情況。並針對Siemens Somatom Sensation 64此台電腦斷層掃描機建立蒙地卡羅模擬程式,以期將來能應用於計算各廠牌電腦斷層掃描機所造成之劑量。研究結果發現,GE系列的nCTDI最高,於頭部、軀幹掃描約為18.81、9.39 mGy/100mAs;Siemens Somatom Sensation 64的nCTDI最小,於頭部、軀幹掃描掃描為10.67、5.41 mGy/100mAs。分析相關結果,建議臨床上進行小兒電腦斷層掃描時,使用之技術條件可降為80kVp,如此一來,可在不犧牲影像品質下,降低約69%的劑量。另發現隨著假體直徑增加(5、10、16、20、24及32 cm),於中軸造成的散射輻射比例為39%、63%、77%、81%、85%及89%。模擬計算方面,初步建立的電腦斷層模型所造成劑量與量測值誤差在16%之內。以這些資料數據為基礎,作為台灣小兒電腦斷層輻射劑量的初探,對瞭解小兒電腦斷層劑量之分析是極具價值。
According to the UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) Report 2000, the largest man made source of ionizing radiation exposure to the world population is from diagnostic medical x-rays. The increasing use of computed tomography (CT) in clinical practice and the relatively high dose delivered to the patient make CT a significant contributor to the population dose from diagnostic medical x-rays. CT images with excellent resolution and high contrast of soft tissue have led to significant advances in medical radiology. Recently, much attention has been shifted to pediatric CT dosimetry due to the increased patient dose and the extra health detriment. Therefore, there is a need for the assessments of radiation dose and health detriment to pediatric CT patients.
To study pediatric CT dosimetry, age-dependent cylindrical phantoms are required for the measurements of CTDI (Computed tomography dose index). In this project, we propose to fabricate several age-dependent cylindrical PMMA phantoms based on the weight- and height-data published by the Department of Health and other references. Age-dependent CT phantoms with diameters in 10, 16, 20, 24 and 32 cm are represented patients with ages in newborn, 1-5y, 5-10y, 10-15y and adult. CTDI in various locations and beam quality are measured by a CT pencil-type ionization chamber and make using traditional and modern CT scanners, i.e. the GE Prospeed Plus, the Simens Somatom Sensation 64, the Philips BrillianceTM 40, and the GE Lightspeed VCT. GE series have the highest nCTDI (18.81(head), 9.39(body) mGy/100mAs) and Siemens Somatom Sensation 64 has the lowest (10.67(head), 5.41(body) mGy/100mAs). More importantly, parameters should be adjusted based on children size. For scanning the pediatric body, 80kVp usually reduced radiation dose for ~69% without sacrificing diagnostic images quality instead of using the same protocol of adults. Furthermore, the contributions from scattered beam to CTDIC are 39%, 63%, 77%, 81%, 85% and 89% with phantom diameters in 5, 10, 16, 20, 24 and 32cm. Also, CT source model and object models with Siemens Somatom Sensation 64 to calculate CT dose have been established for MCNP and the difference between simulated and measured CTDI is within 16%. With these dose data available, a single-scan dose analysis will be applied to derive the pediatric dose guidance levels. The results of this study are very valuable to understand the pediatric CT radiation dose in Taiwan.
1. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects on Atomic Radiation, UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, Volume I: Sources, United Nations, New York. 2000.
2. Imaging Performance Assessment of CT Scanners. www.impactscan.org. 2003.
3. International Electrotechnical Commission, International Standard 60601-2-44, Edition 2.1, "Medical Electrical Equipment – Part 2-44: Particular Requirements for the Safety of X-ray Equipment for Computed Tomography" (IEC, Geneva, Switzerland). 2001.
4. "European Guidelines on Quality Criteria for Computed Tomography," Report 16262 (Luxembourg, Office for Official Publications of the European Communities). 1999.
5. International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. (Oxford: Pergamon Press). 1991.
6. C-L Chapple, S Willis and J Frame, Effective dose in paediatric computed tomography, Physics in Medicine and Biology 47, 107-115, 2002.
7. P. Rogalla, B. Stover, I. Scheer, R. Juran, G. Gaedicke and B. Hamm, Low-dose CT: Applicability to Paediatric Chest Imaging 28, 565-569. 1998.
8. D. McLean, N. Malitz and S. Lewis, Survey of Effective Dose Levels from Typical Paediatric CT Protocols, Australasian Radiology 47, 135-142. 2003.
9. W. Huda, Adult and Pediatric Doses in CT, American Association of Physicists in Medicine 45th Annual Meeting, San Diego, August 10-14. 2003.
10. Occupational, Public and Medical Exposure, Documents of the NRPB, Vol. 4, No. 2, National Radiological Protection Board. 1993.
11. H. Y. Tsai, C. J. Tung, M. H. Huang and Y. L. Wan, Analyses and Applications of Single Scan Dose Profiles in Computed Tomography, Medical Physics Journal 30, 1982-1989. 2003.
12. C. J. Tung, H. Y. Tsai and C. C. Yu, Determination of Dose Guidance Levels for Computed Tomography, Radiation Protection Dosimetry (submitted).
13. C. J. Tung and H. Y. Tsai, Analyses of Computed Tomography Dose Index in terms of Scanner Model and Quality (in preparation).
14. Department of Health, Executive Yuan, R.O.C.(Taiwan).www.doh.gov.tw. (男、女性各年齡層身高、體重、身體質量指數之平均值、標準差、及其與第二次國民營養調查結果之比較 1999/10/01)
15. International Atomic Energy Agency . Compilation of Anatomical, Physiological and Metabolic Characteristics for a Reference Asian Man, International Atomic Energy Agency. 1998.
16. International Commission on Radiological Protection. 1975 Report of Task Group on Reference Man of the International Commission on Radiological Protection. ICRP Publication 23. 1975.
17. K.F. Eckerman, M. Cristy, and J.C. Ryman, The ORNL mathematical phantom series, Dec. 1996.
18. International Commission on Radiation Units and Measurements. 1997 Dose and Volume Specification for Reporting Interstitial Therapy, ICRU Publication 57. 1997.
19. RSICC Computer Code Collection MCNP4C Monte Carlo N-Particle Transport Code System, Los Alamos National Laboratory Los Alamos, New Mexico. July 2000.
20. Edward L. Nickoloff, Ajoy K. Dutta, and Zheng F. Lu. Influence of phantom diameter, kVp and scan mode upon computed comography dose index. Department of Radiology, Columbia University, New York, New York 10962. American Association of Physicists in Medicine@DOI: 10.1118/1.1543149#. 2003.
21. Marilyn J. Siegel, Bernhard Schmidt, David Bradley, Christoph Suess, Charles Hildebolt. Radiation Dose and Image Quality in Pediatric CT: Effect of Technical Factors and Phantom Size and Shape1. Radiology, 233:515–522. 2004.
22. G Jarry, J J DeMarco, U Beifuss, CH Cagnon and M F McNitt-Gray. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models. Phys. Med. Biol. 48 2645–2663. 2003.
23. John DeMarco, Ph.D.Estimating Actual Patient CT Dose: Monte Carlo Monte Carlo Simulations. Southern California AAPM - Midwinter Conference. 2005.
24. J J DeMarco, C H Cagnon, D D Cody, D M Stevens, C H McCollough, J O’Daniel and M F McNitt-Gray. A Monte Carlo Based Method to Estimate Radiation Dose from Multidetector CT (MDCT): Cylindrical and Anthropomorphic Phantoms. Phys. Med. Biol. 503989–4004. 2005.
25. Walter Huda, Ernest M. Scalzetti, Galina Levin. Technique Factors and Image Quality as Functions of Patient Weight at Abdominal CT1. Radiology Medical Physics 217 430-435. 2000.
26. A Khuraheed, M C Hillier, P C Shrimption and B F Wall. Influence of Patient Age on Normalized Effective Doses Calculated for CT Examinations. The British Journal of Radiology 75 819–830. 2002.
27. David J. Brenner, Carl D. Elliston, Eruc J. Hall, Walter E. Berdon. Estimated Risk of Radiation-Induced Fatal Cancer from Pediatric CT. AJR 176 289-296. 2001.
28. Anne Paterson, Donald P. Frush, Lane F. Donnelly. Helical CT of the Body: Are Settings Adjusted for Pediatric Patients. AJR 176 297-301. 2001
29. Lane F. Donnelly, Kathleen H. Emery, Alan S. Brody, Tal Laor, Victoria M. Gylys-Morin, Christopher G. Anton, Stephen R. Thomas, Donald P. Frush. Minimizing Radiation Dose for Pediatric Body Applications of Single-Detector Helical CT: Strategies at a Large Children’s Hospital AJR 176 303-306. 2001.