簡易檢索 / 詳目顯示

研究生: 徐 達
Gajendran, Sridhar
論文名稱: 系外行星間的相關性的研究
Investigating Correlations among Exoplanets
指導教授: 江瑛貴
Jiang, Ing-Guey
口試委員: 辜品高
Gu, Pin-Gao
吳亞霖
Wu, Ya-Lin
葉麗琴
Yeh, Li-Chin
何英宏
Harsono, Daniel
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 86
中文關鍵詞: 系外行星
外文關鍵詞: Exoplanets
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於系外行星系統的大量發現,人們對了解行星系統的起源和形成歷
    史的興趣激增。在這篇博士論文中,我們探討了行星系統之間以及各種行星類
    型之間的各種相關性,以便深入了解它們。我們採用角動量逆差(AMD)模型
    作為理解行星系統的關鍵框架。AMD 模型不僅建立了堅實的物理基礎,還提供
    了有用的分析表達式來闡明行星系統的特徵。我們根據AMD 模型確定了多行
    星系統中相鄰行星的週期比和質量比之間的相關性。後續工作研究系統中不同
    行星類型之間的條件機率。我們使用這些結果來限制這些行星類型的形成理論。
    這些研究結果對行星系統的形成歷史以及這些系統中不同行星類型的存在所造
    成的影響進行了完整的描述。


    The quest to understand the origin and formation histories of planetary systems has witnessed a surge in interest, fueled by the numerous discoveries of extra-solar planetary systems in recent years. In this doctoral thesis, we explore the various correlations between planetary systems and between various planetary types to gain insights about them. We employ the Angular-Momentum-Deficit (AMD) model as a pivotal framework for understanding generic planetary systems. The AMD model not only establishes a robust physical foundation but also provides valuable analytical expressions to elucidate the characteristics of planetary systems. We have identified a correlation between the period-ratios and mass-ratios of adjacent planets in multiple planetary systems in accordance with the AMD model. The follow-up work looks into the conditional probabilities between different planetary types in a system. We use these results to constrain the formation scenario for these planetary types. These results yield a complete and descriptive study of the formation histories of generic planetary systems and the effects/changes caused by the presence of different planet types in these systems.

    Contents ii List of Tables iii List of Figures vii 1 Introduction 1 2 The Period-Ratio-Mass-Ratio Correlation 10 2.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 The Correlation Between Adjacent Planet Pairs . . . . . . . . . . . 16 2.3 The Correlation Between Non-Adjacent Planet Pairs . . . . . . . . 17 2.4 The Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 The Scaling And Spacing Of Planetary Systems 23 3.1 The Scaling and Spacing Rules from the AMD Model . . . . . . . . 26 3.2 The Data and Method . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 A Gas-Free Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 A Gas-Poor Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 The Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Correlations Between Various Planetary Types 44 4.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Conditional Probabilities of Super-Earths and Cold Jupiters . . . . 54 4.3 Conditional Probabilities of Warm Jupiters and Super-Earths . . . 58 4.4 Conditional Probabilities of Warm Jupiters and Cold Jupiters . . . 60 4.5 Planet Multiplicity versus Metallicity . . . . . . . . . . . . . . . . . 61 4.6 The Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Concluding Remarks 67 The Angular Momentum Deficit Model . . . . . . . . . . . . . . . . . . . 77 A Planetary Hamiltonian . . . . . . . . . . . . . . . . . . . . . 77 B Angular Momentum Deficit (AMD) . . . . . . . . . . . . . . 78 C AMD-stability . . . . . . . . . . . . . . . . . . . . . . . . . 79

    Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567
    Alibert, Y., Mordasini, C., Benz, W., & Winisdoerffer, C. 2005, A&A, 434, 343
    Anglada-Escude, G. et al. 2013, A&A, 556, A126
    Aschwanden, M. J. 2018, New Astronomy, 58, 107
    Astudillo-Defru, N. et al. 2017, A&A, 602, A88
    Bonomo, A. S., Dumusque, X., Massa, A., et al. 2023, A&A, 677, A33
    Borucki, W. J. 2016, Rep. Prog. Phys., 79, 036901
    Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977
    Bovaird, T. & Lineweaver, C. H. 2013, MNRAS, 435, 1126
    Bryan, M. L., Knutson, H. A., Lee, E. J., et al. 2019, AJ, 157, 52
    Buchhave, L. A. et al. 2012, Nature, 486, 375
    Burkert, A. & Ida, S. 2007, ApJ, 660, 845–849
    Chambers, J. E. 2001, ICARUS, 152, 205
    Chatterjee, S. & Tan, J. C. 2014, ApJ, 780, 53
    Chiang, E. & Laughlin, G. 2013, MNRAS, 431, 3444
    Christodoulou, D. M. & Kazanas, D. 2019, Research Notes of the American Astronomical
    Society, 3, 50
    Cumming, A. et al. 2008, PASP, 120, 531
    Cuntz, M. 2012, PASJ, 64, 73
    Delisle, J.-B. et al. 2018, A&A, 614, A113
    Diaz, R. F. et al. 2016, A&A, 585, A134
    Dowdy, S. & Wearden, S. 1983, Wiley
    Dressing, C. & Charbonneau, D. 2013, ApJ, 767, 95
    Endl, M., Cochran, W. D., Kürster, M., et al. 2006, ApJ, 649, 436
    Fischer, D. A., Butler, R. P., Marcy, G. W., Vogt, S. S., & Henry, G. W. 2003,
    ApJ, 590, 1081
    Fischer, D. A. & Valenti, J. 2005, ApJ, 622, 1102
    Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,
    306
    Fressin, F., Torres, G., Charbonneau, D., et al. 2013, ApJ, 766, 81
    Fulton, B. J., Rosenthal, L. J., Hirsch, L. A., et al. 2021, ApJS, 255, 14
    Gajendran, S., Jiang, I.-G., Yeh, L.-C., & Sariya, D. P. 2024, MNRAS, 528, 7202
    Gaudi, B. S. 2005, ApJ, 628, L73–L76
    Goldreich, P. & Tremaine, S. 1980, ApJ, 241, 425
    Griv, E. & Gedalin, M. 2005, Proceedings of IAU Colloquium 197, Edited by Z.
    Knezevic and A. Milani, page 97, Cambridge University Press, Cambridge, 97
    Hadden, S. & Lithwick, Y. 2017, AJ, 154, 5
    Hansen, B. M. S. & Murray, N. 2012, ApJ, 751, 158
    Hayashi, C. 1981, PThPS, 70, 35
    Hayes, W. & Tremaine, S. 1998, Icarus, 135, 549
    Hebrard, G. et al. 2016, A&A, 588, A145
    Holman, M. J. & Norman, M. W. 2005, Science, 307, 1288
    Huang, C. X. & Bakos, G. A. 2014, MNRAS, 442, 1674
    Ida, S. & Lin, D. N. C. 2004, ApJ, 604, 388
    Ida, S. & Lin, D. N. C. 2010, ApJ, 719, 810
    Izidoro, A. et al. 2015, ApJL, 800, L22
    Jenkins, J. S. et al. 2014, MNRAS, 441, 2253
    Jiang, I.-G., Yeh, L.-C., Chang, Y.-C., & Hung, W.-L. 2007, AJ, 134, 2061
    Jiang, I.-G., Yeh, L.-C., Chang, Y.-C., & Hung, W.-L. 2009, AJ, 137, 329–336
    Jiang, I.-G., Yeh, L.-C., & Hung, W.-L. 2015, MNRAS, 449, L65–L67
    Jiang, I.-G., Yeh, L.-C., Hung, W.-L., & Yang, M.-S. 2006, MNRAS, 370, 1379–
    1392
    Johnson, J. A., R, P, B., Marcy, G. W., et al. 2007, ApJ, 670, 833
    Jones, H. R. A., Butler, R., Tinney, C. G., et al. 2003, MNRAS, 341, 948
    Jones, H. R. A., Butler, R. P., Tinney, C. G., et al. 2006, MNRAS, 369, 249
    Jontof-Hutter, D. et al. 2014, ApJ, 785, 15
    Laskar, J. 2000, PRL, 590, 3240
    Laskar, J. 2017, A&A, 605, A72
    Laskar, J. & Petit, A. 2017, A&A, 605, A72
    Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606–607
    Lynch, P. 2003, MNRAS, 341, 1174–1178
    Marcy, W. G., Isaacson, H., Howard, A. W., et al. 2014, ApJS, 210, 20
    Mayor, M., Marmier, M., Lovis, C., et al. 2011, ArXiv:1109.2497
    Mayor, M. & Queloz, D. 1995, Nature, 378, 355
    Mazeh, T. & Zucker, S. 2003, ApJ, 590, L115–L117
    Miralda-Escude, J. 2002, ApJ, 564, 1019
    Morbidelli, A. & Raymond, S. N. 2016, JGRE, 121, 1962
    Mordasini, C., Alibert, Y., & Benz, W. 2009a, A&A, 501, 1139
    Mordasini, C., Alibert, Y., Benz, W., & Naef, D. 2009b, A&A, 501, 1161
    Mulders, G. D., Pascucci, I., & Apai, D. 2015, ApJ, 814, 130
    Naef, D., Mayor, M., & Beuzit, J. 2005, in 13th Cambridge Workshop on Cool
    Stars, Stellar Systems and the Sun, eds. F. Favata, G. A. J. Hussain, & B.
    Battrick, ESA SP, 560, 833
    Nelson, B. E. et al. 2014, MNRAS, 441, 442
    Nelson, R. P., Papaloizou, J. C. B., Masset, F., & Kley, W. 2000, MNRAS, 318,
    18
    Patton, J. M. 1988, Celestial Mechanics, 44, 365
    Pätzold, M. & Rauer, H. 2002, ApJ, 568, L117–L120
    Petigura, E. K., Howard, A. W., & Marcy, G. W. 2013, Proceedings of the National
    Academy of Science, 110, 19273
    Pletser, V. 2019, ApSS, 364, 158
    Pollack, B. J., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus, 124, 62
    Poveda, A. & Lara, P. 2008, RevMexAA, 44, 243
    Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1992, Cambridge
    University Press
    Rajpaul, V., Aigrain, S., & Roberts, S. 2016, MNRAS, 456, L6
    Rawal, J. 1986, ApSS, 119, 159
    Rosenthal, L. J., Fulton, B. J., Hirsch, L. A., et al. 2021, ApJS, 255, 8
    Rosenthal, L. J., Knutson, H. A., Chachan, Y., et al. 2022, ApJS, 262, 1
    Santos, N. C., Israelian, G., & Mayor, M. 2001, A&A, 373, 1019
    Schlaufman, K. C. 2014, ApJ, 790, 91
    Schlichting, H. E. 2018, arXiv:1802.03090
    Snellgrove, M. D., Papaloizou, J. C. B., & Nelson, R. P. 2001, A&A, 374, 1092
    Tabachnik, S. & Tremaine, S. 2002a, MNRAS, 335, 151
    Tabachnik, S. & Tremaine, S. 2002b, MNRAS, 335, 151–158
    Udry, S., Mayor, M., & Santos, N. C. 2003, A&A, 407, 369
    Udry, S. et al. 2006, A&A, 447, 361
    Vogt, S. S. et al. 2017, AJ, 154, 181
    Wang, J. & Fischer, D. A. 2015, AJ, 149, 14
    Weidenschilling, S. 1977, ApSS, 51, 153
    Weiss, L. et al. 2017, AJ, 153, 265
    Wittenmyer, R. A., Butler, R. P., Tinney, C. G., et al. 2016, ApJ, 819, 28
    Wittenmyer, R. A. Wang, S., Horner, J., Butler, R. P., et al. 2020, MNRAS, 492,
    377–383
    Wolszczan, A. & Frail, D. 1992, Nature, 355, 145
    Wu, Y. & Lithwick, Y. 2013, ApJ, 772, 74
    Yeh, L.-C., Jiang, I.-G., & Gajendran, S. 2020, ApSS, 365, 186
    Zechmeister, M., Kürster, M., Endl, M., et al. 2013, A&A, 552, A78
    Zhu, W. & Dong, S. 2021, Annual Review of Astronomy and Astrophysics, 59,
    291
    Zhu, W. & Wu, Y. 2018, AJ, 156, 92
    Zhu, W. et al. 2016, ApJ, 832, 196
    Zhu, W. et al. 2018, ApJ, 860, 101
    Zucker, S. & Mazeh, T. 2002, ApJ, 568, L113

    QR CODE