簡易檢索 / 詳目顯示

研究生: 郭晟瑀
Kuo, Cheng-Yu
論文名稱: 應用分子動力學模擬研究不同長寬比模具奈米壓印系統的加工行為
Molecular Dynamics Simulation of Thermoplastic Nanoimprint Lithography Process with Various Aspect Ratio Moulds
指導教授: 張榮語
Chang, Rong-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 115
中文關鍵詞: 分子動力學模擬奈米壓印密度分布相互作用力應力分布
外文關鍵詞: Molecular dynamics, nanoimprint, density distribution, interacting force, stress distribution
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用分子動力學模擬極性高分子PEO在熱壓式奈米壓印中的加工行為,探討不同長寬比模具對壓印系統特性的影響。
    首先取五種不同長寬比的模具,接著配合兩種降溫溫度去觀察在各種條件下高分子材料於壓印過程中的一個變形的情形。並利用密度分布、應力分布等性質來討論不同長寬比壓印的影響,並以這些性質來分析高分子變形、彈力回復的現象。
    最後探討壓印時模具與材料之間的互相作用力情形,探討摩擦力的影響,並重新設計一模具,改善在長寬比較大壓的較深的系統中,應力大量聚集的情形。


    In this research, a molecular dynamics simulation model of thermoplastic nanoimprint lithography process is proposed. The model is imprinting a gold mould into a PEO film to study the polymer deformation behavior.
    The polymer deformation is observed in the thermoplastic nanoimprint lithography process by using five different aspect ratio moulds with two different cooling down temperatures. The distribution of stress and density in the systems is investigated to discuss the effect of the systems with different aspect ration moulds.
    The interacting forces are obtained by dividing the polymer into three regions between the polymer and the mould. Discuss about the friction effect in the systems. Finally, redesign a new mould trying to improve the phenomenon that the large stress couldn’t release completely in old nanoimprint process.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 6 1.3 奈米壓印技術簡介 7 1.4 分子動力學模擬簡介 11 第二章 文獻回顧 12 2.1 奈米壓印文獻回顧 12 2.2 分子動力學模擬文獻回顧 20 2.3 分子動力學於奈米壓印之研究 24 第三章 研究方法 36 3.1 分子動力學基本理論 36 3.1.1分子動力學的基本假設與模擬流程 36 3.1.2運動方程式的數值方法 39 3.1.3週期性邊界 42 3.2 分子勢能場 45 3.2.1分子內作用力 45 3.2.2分子間作用力 46 3.3 系統的控制 50 3.4 程式加速方法 51 3.5 性質統計 52 第四章 模擬系統架構 55 4.1 勢能參數 55 4.2 系統架構 57 第五章 結果與討論 60 5.1不同長寬比壓印系統比較 60 5.1.1壓印瞬照圖 60 5.1.2壓印過程系統特性分析 71 5.1.3模具與高分子間作用力影響 95 5.2新模具壓印系統 101 第六章 結論與未來展望 109 Reference: 111

    1. Feynman, R.P., Lectures on Physics. 1963. 1: p. 3-6.
    2. 陳方周, 奈米科技概說及發展-奈米科技概論.
    3. Binnig, G., et al., Tunneling through a controllable vacuum gap. applied Physics Letters, 1982. 40: p. 178.
    4. Eigler, D.M. and E.K. Schweizer, Positioning single atoms with scanning tunnelling microscope. Nature, 1990. 344: p. 524-526.
    5. 胡淑芬 and 國家毫微米元件實驗室, 奈米科技發展之介紹. 毫微米通訊. Vol. 8.
    6. 奈米國家型科技計畫. 2008.
    7. 工業技術研究院 and 奈米科技研發中心. 2008.
    8. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett., 1995. 67(21): p. 3114-3116.
    9. 吳兆棋, et al., 奈米轉印國際發展現況. 機械工業雜誌, 2006. 279: p. 29-42.
    10. Huang, X.D., et al., Reversal imprinting by transferring polymer from mold to substrate. J. Vac. Sci. Technol. B, 2002. 20(6): p. 2872.
    11. Chou, S.Y., C. Keimel, and J. Gu, Ultrafast and direct imprint of nanostructures in silicon. Nature, 2002. 417(20): p. 835-837.
    12. Tan, H., A. Gilbertson, and S.Y. Chou, Roller nanoimprint lithography. J. Vac. Sci. Technol. B, 1998. 16(6): p. 3926-3928.
    13. 張文固, 奈米壓印(微影)技術簡介Introduction to Nanoimprint (Lithography) Technology.
    14. Haile, J.M., Molecular Dynamics Simulation. 1997: Wiley.
    15. Haile, J.M., Molecular dynamics simulation: Elementary Methods. 1997: Wiley.
    16. Allen, M.P. and J.P. Tildesley, Computer simulation of Liquids. 1987: Oxford Science Publications.
    17. Sadus, R.J., Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation. 1999: Elsevier.
    18. Rapaport, D.C., The art of Molecular Dynamics Simulation. 1995.
    19. Alder, B.J. and T.E. Wainwright, Phase Transition for a Hard Sphere System. J. Chem. Phys., 1957. 27: p. 1208-1209.
    20. Krauss, P.R. and S.Y. Chou, Nano-compact disks with 400 Gbit/in[sup 2] storage density fabricated using nanoimprint lithography and read with proximal probe. Appl. Phys. Lett., 1997. 71(21): p. 3174-3176.
    21. Chou, S.Y. and P.R. Krauss, Imprint lithography with sub-10 nm feature size and high throughput Microelectronic Engineering, 1997. 35(1-4): p. 237-240.
    22. Chou, S.Y., et al., Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B, 1997. 15(6): p. 2897-2903.
    23. Colburn, M., et al., Step and flash imprint lithography: a new approach to high-resolution patterning. http://www.molecularimprints.com/NewsEvents/tech_articles/UT_SFIL_SPIE_1999.pdf, 1999.
    24. Bailey, T., et al., Step and flash imprint lithography: Defect analysis. J. Vac. Sci. Technol. B, 2001. 19(6): p. 2806-2810.
    25. Li, M., et al., Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography. Appl. Phys. Lett., 2000. 76(6): p. 673-675.
    26. Heyderman, L.J., et al., Flow behaviour of thin polymer films used for hot embossing lithography Microelectronic Engineering, 2000. 54: p. 229-245.
    27. Scheera, H.-C., et al., Problems of the nanoimprinting technique for nanometer scale pattern definition. J. Vac. Sci. Technol. B, 1998. 16(6): p. 3917-3921.
    28. Hirai, Y., S. Yoshida, and N. Takagi, Defect analysis in thermal nanoimprint lithography. J. Vac. Sci. Technol. B, 2003. 21(6): p. 2765-2770.
    29. Martin, C., L. Ressier, and J.P. Peyrade, Study of PMMA recoveries on micrometric patterns replicated by nano-imprint lithography Physica E, 2003. 17: p. 523-525.
    30. Austin, M.D., et al., 6 nm half-pitch lines and 0.04 .mu.m2 static random access memory patterns by nanoimprint lithography. nanotechology, 2005. 16: p. 1058-1061.
    31. Mohamed, K., M.M. Alkaisi, and J. Smaill, Resist deformation at low temperature in nanoimprint lithography. Current Applied Physics, 2006. 6: p. 486–490.
    32. Murphy, P.F., et al., Nanoimprint mold fabrication and replication by room-temperature conformal chemical vapor deposition. Applied Physics Letters, 2007. 90: p. 203115.
    33. Irving, J.H. and J.G. Kirkwood, The statistical mechanical theory of transport properties. IV. The equation of hydrodynamics. J. Chem. Phys., 1950. 18: p. 817-829.
    34. Rahman, A., Correlations in the Motion of Atoms in Liquid Argon. Physical Review, 1964. 136: p. 405-411.
    35. Rahman, A. and F.H. Stillinger, Improved simulation of liquid water by molecular dynamics. J. Chem. Phys., 1974. 60(4): p. 1545-1557.
    36. Rigby, D. and R.-J. Roe, Molecular dynamics simulation of polymer liquid and glass. I. Glass transition. J. Chem. Phys., 1987. 87: p. 7285.
    37. Rigby, D. and R.-J. Roe, Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation. J. Chem. Phys., 1988. 89: p. 5280-5290.
    38. Rigby, D. and R.-J. Roe, Molecular dynamics simulation of polymer liquid and glass. 3. Chain conformation. J. Chem. Phys., 1989. 22: p. 2259.
    39. Rigby, D. and R.-J. Roe, Molecular dynamics simulation of polymer liquid and glass. 4. Free-volume distribution. Macromolecules, 1990. 23: p. 5312-5319.
    40. Kavassalis, T.A. and R.P. Sundararajan, A molecular-dynamics study of polyethylene crystallization. Macromolecules, 1993. 26: p. 4144.
    41. Fujiwara, S. and T. Sato, Molecular dynamics simulations of structural formation of a single polymer chain: bond-orientational order and conformational defects. J. Chem. Phys., 1997. 107(2): p. 613-622.
    42. Fujiwara, S. and T. Sato, Molecular dynamics study of structure formation of a single polymer chain by cooling. Computer Physics Communications, 2001. 142: p. 123-126.
    43. Fujiwara, S. and T. Sato, Molecular dynamics simulation of a single polymer chain. Computer Physics Communications, 2002. 147: p. 342-345.
    44. Chen, C., et al., A comparison of united atom, explicit atom, and coarse-grained simulation models for poly(ethylene oxide). J. Chem. Phys., 2006. 124: p. 234901-1.
    45. HSU, Q.-C., C.-D. WU, and T.-H. FANG, Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics. Japanese Journal of Applied Physics, 2004. 43(11A): p. 7665–7669.
    46. Hsu, Q.-C., C.-D. Wu, and T.-H. Fang, Studies on Deformation Mechanism and Punch Taper Effects on Nanoimprint Processes by Molecular Dynamics. AIP Conference Proceedings, 2004. 712(1): p. p1577-1582.
    47. Hsu, Q.C., C.D. Wu, and T.H. Fang, Studies on nanoimprint process parameters of copper by molecular dynamics analysis Computational Materials Science, 2005. 34: p. 314-322.
    48. Kim, J.Y., J.H. Kim, and B.I. Choi, Mechanical Behavior Simulation of PMMA for Nano Imprint Lithography Using Molecular Dynamics. Key Engineering Materials Vols. 345-346 (2007) pp 979-982, 2007. 345-346 p. 979-982.
    49. Woo, Y.S., et al., Density variation of nanoscale patterns in thermal nanoimprint lithography. APPLIED PHYSICS LETTERS 2007. 91(253111).
    50. Pei, Q.X., et al., Molecular dynamics study on the nanoimprint of copper. J. Phys. D: Appl. Phys. , 2007. 40 p. 4928–4935.
    51. Fang, T.-H., C.-D. Wu, and W.-J. Chang, Molecular dynamics analysis of nanoimprinted Cu–Ni alloys. Applied Surface Science, 2007. 253: p. 6963–6968.
    52. Cheng, M.-C., C.-K. Sung, and W.H. Wang, The effects of thin-film thickness on the formaton of metallic patterns by direct nanoimprint. Journal of Materials Processing Technology, 2007. 191: p. 326-330.
    53. Cheng, M.-C., et al., The Effect of Metal-Film Thickness on Pattern Formation by Using Direct Imprint. Japanese Journal of Applied Physics, 2007. 46(9B): p. 6382–6386.
    54. Hsieh, C.-W. and C.-K. SUNG, Atomic-Scale Friction in Direct Imprinting Process: Molecular Dynamics Simulation. Japanese Journal of Applied Physics, 2007. 46 (9B): p. 6387–6390.
    55. Sun, H., et al., Anti-sticking treatment for a nanoimprint stamp. Applied Surface Science 2008. 254: p. 2955–2959.
    56. TADA, K., et al., Molecular Dynamics Study of Yield Stress of Si Mold for Nanoimprint Lithography. Japanese Journal of Applied Physics, 2008. 47 (4): p. 2320–2323.
    57. Lv, Y., et al., Application of molecular dynamics modeling for the prediction of selective adsorption properties of dimethoate imprinting polymer. Sensors and Actuators B, 2008. 133: p. 15–23.
    58. Wu, C.-D. and J.-F. Lin, Multiscale particle dynamics in nanoimprint process. Applied Physics A: Materials Science & Processing, 2008. 91 (2): p. 273-279.
    59. Fang, T.-H., et al., Effect of thermal annealing on nanoimprinted Cu–Ni alloys using molecular dynamics simulation. Applied Surface Science, 2009. 255: p. 6043–6047.
    60. Hsiung, H.Y., H.Y. Chen, and C.K. Sung, Temperature effects on formation of metallic patterns in direct nanoimprint technique—Molecular dynamics simulation and experiment. Journal of Materials Processing Technology 2009. 209: p. 4401-4406.
    61. 林俊儀 and 張榮語, 以分子動力學模擬奈米壓印的加工行為. 國立清華大學化學工程學系94年碩士論文, 2005.
    62. 陳長福 and 張榮語, 以分子動力學模擬研究熱壓式奈米壓印系統的加工行為. 國立清華大學化學工程學系97年碩士論文, 2008.
    63. P., E., Die Berechung optischer und elektrostatischer Gitterpotentiale. Ann. Phys., 1921. 369: p. 253-287.
    64. Matthey, T., Plain Ewald and PME. 2005.
    65. Hoover, W.G., Canonical dynamics:Equilibrium phase-space distributions. Physical Review A, 1985. 31: p. 1695-1697.
    66. Nose, S., A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 1984. 81: p. 511-519.
    67. Verlet, L., Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 1967. 159: p. 98-103.
    68. Einstein, A., On the Movement of Small Particles Suspended in a Stationary Liquid Demanded by the Molecular-Kinetic Theory ofHeat. Ann. Phys., 1905. 17(549).
    69. Smith, G.D., R.L. Jaffe, and D.Y. Yoon, A Force Field for Simulations of 1,2-Dimethoxyethane and Poly(oxyethylene) Based upon ab Initio Electronic Structure Calculations on Model Molecules. J. Phys. Chem., 1993. 97: p. 12752-12759.
    70. Mayo, S.L., B.D. Olafson, and W.A.I. Goddard, DREIDING: a generic force field for molecular simulatio. J. Phys. Chem., 1990. 194: p. 8897-8909.
    71. Jang, S.S., et al., Structures and Properties of Self-Assembled Monolayers of Bistable [2]Rotaxanes on Au (111) Surfaces from Molecular Dynamics Simulations Validated with Experiment J. Am. Chem. Soc., 2005. 127(5): p. 1563 -1575.
    72. Kang, J.-H., K.-S. Kim, and K.-W. Kim, Molecular dynamics study of pattern transfer in nanoimprint lithography. Tribology Letters, 2007. 25(2).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE